SaraNextGen.Com
Updated By SaraNextGen
On April 21, 2024, 11:35 AM

Page No 463: - Chapter 13 Nuclei Exercise Solutions class 12 ncert solutions Physics - SaraNextGen [2024-2025]


Question 13.9:

Obtain the amount of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m3f06cd34.gif necessary to provide a radioactive source of 8.0 mCi strength. The half-life of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m3f06cd34.gif is 5.3 years.

Answer:

The strength of the radioactive source is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m267cc491.gif

Where,

N = Required number of atoms

Half-life ofhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m3f06cd34.gifhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_mdda5227.gif  = 5.3 years

= 5.3 × 365 × 24 × 60 × 60

= 1.67 × 108 s

For decay constant λ, we have the rate of decay as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m6a4a579b.gif

Where, λ https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m570fa75d.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_4762210d.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m5663814f.gif

Forhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_20db6e7b.gif :

Mass of 6.023 × 1023 (Avogadro’s number) atoms = 60 g

∴Mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m73d7ff59.gif atoms https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m1d8aa47.gif

Hence, the amount of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7993/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_20db6e7b.gif  necessary for the purpose is 7.106 × 10−6 g.

Question 13.10:

The half-life of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_679d9b6d.gif is 28 years. What is the disintegration rate of 15 mg of this isotope?

Answer:

Half life of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_679d9b6d.gifhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m55c40a46.gif = 28 years

= 28 × 365 × 24 × 60 × 60

= 8.83 × 108 s

Mass of the isotope, m = 15 mg

90 g of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_679d9b6d.gif atom contains 6.023 × 1023 (Avogadro’s number) atoms.

Therefore, 15 mg of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_679d9b6d.gif  contains:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m63042820.gif

Rate of disintegration, https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m6a4a579b.gif

Where,

λ = Decay constant https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_bc61521.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7994/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_503e32e6.gif

Hence, the disintegration rate of 15 mg of the given isotope is 7.878 × 1010 atoms/s.

Question 13.11:

Obtain approximately the ratio of the nuclear radii of the gold isotope https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7996/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_54d7899.gif  and the silver isotopehttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7996/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_6d3d8473.gif .

Answer:

Nuclear radius of the gold isotopehttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7996/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_2775a1f.gif  = RAu

Nuclear radius of the silver isotopehttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7996/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_451673c1.gif  = RAg

Mass number of gold, AAu = 197

Mass number of silver, AAg = 107

The ratio of the radii of the two nuclei is related with their mass numbers as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7996/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m5270376f.gif

Hence, the ratio of the nuclear radii of the gold and silver isotopes is about 1.23.

Question 13.12:

Find the Q-value and the kinetic energy of the emitted α-particle in the α-decay of (a) https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_4a5f44ab.gif and (b)https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_4599dedc.gif .

Given

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_41aeaf34.gif  = 226.02540 u, https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_570b5a6b.gif  = 222.01750 u,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_177ca0ef.gif = 220.01137 u, https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_594538cc.gif = 216.00189 u.

Answer:

(a) Alpha particle decay of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m2ecc7672.gif emits a helium nucleus. As a result, its mass number reduces to (226 − 4) 222 and its atomic number reduces to (88 − 2) 86. This is shown in the following nuclear reaction.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_27853c1f.gif

Q-value of

emitted α-particle = (Sum of initial mass − Sum of final mass) c2

Where,

c = Speed of light

It is given that:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_403feaa6.gif

Q-value = [226.02540 − (222.01750 + 4.002603)] u c2

= 0.005297 u c2

But 1 u = 931.5 MeV/c2

Q = 0.005297 × 931.5 ≈ 4.94 MeV

Kinetic energy of the α-particle https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m38e65129.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m2a706cc2.gif

(b) Alpha particle decay of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_52d61109.gif  is shown by the following nuclear reaction.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_34726468.gif

It is given that:

Mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_52d61109.gif = 220.01137 u

Mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m4bd29de8.gif = 216.00189 u

Q-value = https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m70e1011.gif

≈ 641 MeV

Kinetic energy of the α-particle https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/7998/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m44397a56.gif

= 6.29 MeV

Question 13.13:

The radionuclide 11C decays according to

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_46d2dae0.gif

The maximum energy of the emitted positron is 0.960 MeV.

Given the mass values:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m14726060.gif

calculate and compare it with the maximum energy of the positron emitted

Answer:

The given nuclear reaction is:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m107aae15.gif

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m56a7e5bd.gif = 11.011434 u

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_51ec3683.gif

Maximum energy possessed by the emitted positron = 0.960 MeV

The change in the Q-value (ΔQ) of the nuclear masses of the https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m26f5a503.gif  nucleus is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_72bdba2d.gif

Where,

me = Mass of an electron or positron = 0.000548 u

= Speed of light

m’ = Respective nuclear masses

If atomic masses are used instead of nuclear masses, then we have to add 6 me in the case ofhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_18f7c89a.gif and 5 min the case ofhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m74598a6e.gif .

Hence, equation (1) reduces to:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8000/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_2887962a.gif

∴ΔQ = [11.011434 − 11.009305 − 2 × 0.000548] c2

= (0.001033 c2) u

But 1 u = 931.5 Mev/c2

∴ΔQ = 0.001033 × 931.5 ≈ 0.962 MeV

The value of Q is almost comparable to the maximum energy of the emitted positron.

Question 13.14:

The nucleus https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_34ed9aa7.gif decays byhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m67556fa3.gif emission. Write down thehttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_1de0ccf7.gif  decay equation and determine the maximum kinetic energy of the electrons emitted. Given that:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_2d5bc804.gif = 22.994466 u

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m6e3ecb1f.gif = 22.989770 u.

Answer:

In https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m67556fa3.gif  emission, the number of protons increases by 1, and one electron and an antineutrino are emitted from the parent nucleus.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m67556fa3.gif  emission of the nucleus https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_34ed9aa7.gif  is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m10ad2d46.gif

It is given that:

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_2d5bc804.gif = 22.994466 u

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m6e3ecb1f.gif = 22.989770 u

Mass of an electron, m= 0.000548 u

Q-value of the given reaction is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_157ebe0f.gif

There are 10 electrons in https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_34ed9aa7.gif  and 11 electrons inhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m6358b7e7.gif . Hence, the mass of the electron is cancelled in the Q-value equation.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_63b20059.gif

The daughter nucleus is too heavy as compared to https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_6b7ff0ec.gif and https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8002/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m1403ccce.gif . Hence, it carries negligible energy. The kinetic energy of the antineutrino is nearly zero. Hence, the maximum kinetic energy of the emitted electrons is almost equal to the Q-value, i.e., 4.374 MeV.

Question 13.15:

The value of a nuclear reaction → is defined by

= [ mAmb− mC− md]cwhere the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

(i) https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_616a61bf.gif

(ii) https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_1b33adcf.gif

Atomic masses are given to be

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_4705f282.gif

Answer:

(i) The given nuclear reaction is:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_63c8145.gif

It is given that:

Atomic mass https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_6f8a4e56.gif

Atomic mass https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_7f7ffd92.gif

Atomic mass https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_3c4e1166.gif

According to the Question, the Q-value of the reaction can be written as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_5174426f.gif

The negativeQ-value of the reaction shows that the reaction is endothermic.

(ii) The given nuclear reaction is:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_3625d78e.gif

It is given that:

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m2561efac.gif

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_623aeb77.gif

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m57c1b040.gif

The Q-value of this reaction is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8005/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m55d49e49.gif

The positive Q-value of the reaction shows that the reaction is exothermic.

Question 13.16:

Suppose, we think of fission of a https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m4037bd97.gif nucleus into two equal fragments,https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m22a24db5.gif . Is the fission energetically possible? Argue by working out of the process. Given https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m1013b8fe.gif  andhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_289f5e87.gif .

Answer:

The fission of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m4037bd97.gif can be given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_13ceb8b2.gif

It is given that:

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m2e0e01c1.gif  = 55.93494 u

Atomic mass of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m128810ac.gif

The Q-value of this nuclear reaction is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8007/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m6409a453.gif

The Q-value of the fission is negative. Therefore, the fission is not possible energetically. For an energetically-possible fission reaction, the Q-value must be positive.

Question 13.17:

The fission properties of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m36efaa7f.gif are very similar to those ofhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_4c809fc5.gif .

The average energy released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m36efaa7f.gif undergo fission?

Answer:

Average energy released per fission ofhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m36efaa7f.gifhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m1e6c7ed8.gif

Amount of purehttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_me69179b.gif , m = 1 kg = 1000 g

NA= Avogadro number = 6.023 × 1023

Mass number ofhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m36efaa7f.gif = 239 g

1 mole of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_me69179b.gif contains NA atoms.

m g of https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_me69179b.gif containshttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m6bec6381.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m66c0a3ef.gif

∴Total energy released during the fission of 1 kg ofhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m36efaa7f.gif is calculated as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_m4b87fbfd.gif

Hence, https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_2b0ab274.gif  is released if all the atoms in 1 kg of pure https://img-nm.mnimgs.com/img/study_content/curr/1/12/16/257/8009/NS_4-11-08_Sravana_12_Physics_13_31_NRJ_LVN_html_me69179b.gif undergo fission.

Also Read : Page-No-464:-Chapter-13-Nuclei-Exercise-Solutions-class-12-ncert-solutions-Physics

SaraNextGen