SaraNextGen.Com

Page No 120: - Chapter 4 Chemical Kinetics Exercise Solutions class 12 ncert solutions Chemistry - SaraNextGen [2024-2025]


Updated By SaraNextGen
On April 24, 2024, 11:35 AM

Question 4.22:

The rate constant for the decomposition of N2O5 at various temperatures is given below:

T/°C

0

20

40

60

80

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_2066c989.gif

0.0787

1.70

25.7

178

2140

Predict the rate constant at 30º and 50ºC.Draw a graph between ln and 1/and calculate the values of and Ea.

Answer:

From the given data, we obtain

T/°C

0

20

40

60

80

T/K

273

293

313

333

353

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m20ff4268.gif

3.66×10−3

3.41×10−3

3.19×10−3

3.0×10−3

2.83 ×10−3

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m33822587.gif

0.0787

1.70

25.7

178

2140

ln k

−7.147

− 4.075

−1.359

−0.577

3.063

Slope of the line,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m5d4d0ef3.jpg

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m10e5221b.gif

According to Arrhenius equation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_1553283a.gif

Again,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m4d3d2169.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_7613e420.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_5a454947.gif

When https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m2e75f310.gif ,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_mcce9817.gif

Then, https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m21d3621e.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_md01823a.gif

Again, when https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_38d00a94.gif ,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m26741d.gif

Then, at https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m194334f6.gif ,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6373/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m20d30914.gif

Question 4.23:

The rate constant for the decomposition of hydrocarbons is 2.418 × 10−5 s−1 at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor.

Answer:

k = 2.418 × 10−5 s−1

T = 546 K

Ea = 179.9 kJ mol−1 = 179.9 × 103 J mol−1

According to the Arrhenius equation,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6360/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m6d7bd495.gif

= (0.3835 − 5) + 17.2082

= 12.5917

Therefore, A = antilog (12.5917)

= 3.9 × 1012 s−1 (approximately)

Question 4.24:

Consider a certain reaction A → Products with = 2.0 × 10−2 s−1. Calculate the concentration of remaining after 100 s if the initial concentration of is 1.0 mol L−1.

Answer:

k = 2.0 × 10−2 s−1

T = 100 s

[A]o = 1.0 moL−1

Since the unit of k is s−1, the given reaction is a first order reaction.

Therefore, https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6362/NS_14-11-08_Utpal_12_Chemistry_4_30_html_42cab5cd.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6362/NS_14-11-08_Utpal_12_Chemistry_4_30_html_7af8db04.gif

= 0.135 mol L−1 (approximately)

Hence, the remaining concentration of A is 0.135 mol L−1.

Question 4.25:

Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with t1/2 = 3.00 hours. What fraction of sample of sucrose remains after 8 hours?

Answer:

For a first order reaction,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6363/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m7f521f40.gif

It is given that, t1/2 = 3.00 hours

Therefore, https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6363/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m37f6ea30.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6363/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m5b89395e.gif

= 0.231 h−1

Then, 0.231 h−1 https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6363/NS_14-11-08_Utpal_12_Chemistry_4_30_html_17d9f90d.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6363/NS_14-11-08_Utpal_12_Chemistry_4_30_html_27c263e8.gif

Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158.

Question 4.26:

The decomposition of hydrocarbon follows the equation

= (4.5 × 1011 s−1) e−28000 K/T

Calculate Ea.

Answer:

The given equation is

= (4.5 × 1011 s−1) e−28000 K/T (i)

Arrhenius equation is given by,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6365/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m14693e7a.gif  (ii)

From equation (i) and (ii), we obtain

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6365/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m1fcffae4.gif

= 8.314 J K−1 mol−1 × 28000 K

= 232792 J mol−1

= 232.792 kJ mol−1

Question 4.27:

The rate constant for the first order decomposition of H2O2 is given by the following equation:

log = 14.34 − 1.25 × 10K/T

Calculate Ea for this reaction and at what temperature will its half-period be 256 minutes?

Answer:

Arrhenius equation is given by,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6366/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m14693e7a.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6366/NS_14-11-08_Utpal_12_Chemistry_4_30_html_1c450463.gif

The given equation is

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6366/NS_14-11-08_Utpal_12_Chemistry_4_30_html_54fa18f5.gif

From equation (i) and (ii), we obtain

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6366/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m6b2e6e1a.gif

= 1.25 × 104 K × 2.303 × 8.314 J K−1 mol−1

= 239339.3 J mol1 (approximately)

= 239.34 kJ mol−1

Also, when t1/2 = 256 minutes,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6366/NS_14-11-08_Utpal_12_Chemistry_4_30_html_6d29612.gif

= 2.707 × 10−3 min−1

= 4.51 × 10−5 s−1

It is also given that, log k = 14.34 − 1.25 × 104 K/T

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6366/NS_14-11-08_Utpal_12_Chemistry_4_30_html_7cd6c23e.gif

= 668.95 K

= 669 K (approximately)

Question 4.28:

The decomposition of A into product has value of as 4.5 × 103 s−1 at 10°C and energy of activation 60 kJ mol−1. At what temperature would be 1.5 × 104 s−1?

Answer:

From Arrhenius equation, we obtain

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6367/NS_14-11-08_Utpal_12_Chemistry_4_30_html_3dfd91da.gif

Also, k1 = 4.5 × 103 s−1

T1 = 273 + 10 = 283 K

k2 = 1.5 × 104 s−1

Ea = 60 kJ mol−1 = 6.0 × 104 J mol−1

Then,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6367/NS_14-11-08_Utpal_12_Chemistry_4_30_html_352723eb.gif

= 297 K

= 24°C

Hence, k would be 1.5 × 104 s−1 at 24°C.

Note: There is a slight variation in this Answer and the one given in the NCERT textbook.

Question 4.29:

The time required for 10% completion of a first order reaction at 298 K is

equal to that required for its 25% completion at 308 K. If the value of is

4 × 1010 s−1. Calculate at 318 K and Ea.

Answer:

For a first order reaction,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m3dc2484c.gif

At 298 K, https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_me013af8.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m40158ae0.gif

At 308 K, https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_4bd7d91c.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_5255b362.gif

According to the Question,

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m7629dcdf.gif

From Arrhenius equation, we obtain

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_2c6b4ed9.gif

To calculate at 318 K,

It is given that, https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m104d34ff.gif

Again, from Arrhenius equation, we obtain

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m1e4ce7c7.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6368/NS_14-11-08_Utpal_12_Chemistry_4_30_html_5e008bec.gif

Question 4.30:

The rate of a reaction quadruples when the temperature changes from

293 K to 313 K. Calculate the energy of activation of the reaction assuming

that it does not change with temperature.

Answer:

From Arrhenius equation, we obtain

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/263/6370/NS_14-11-08_Utpal_12_Chemistry_4_30_html_m1aef9111.gif

Hence, the required energy of activation is 52.86 kJmol−1.

Also Read : INTRODUCTION-Chapter-4-Chemical-Kinetics-Intext-Solutions-class-12-ncert-solutions-Chemistry

SaraNextGen