SaraNextGen.Com
Updated By SaraNextGen
On April 21, 2024, 11:35 AM

INTRODUCTION - Chapter 2 Structure Of Atom class 11 ncert solutions Chemistry - SaraNextGen [2024-2025]


Question 2.1:

(i) Calculate the number of electrons which will together weigh one gram.

(ii) Calculate the mass and charge of one mole of electrons.

Answer:

(i) Mass of one electron = 9.10939 × 10–31 kg

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3381/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_4dd19828.gif Number of electrons that weigh 9.10939 × 10–31 kg = 1

Number of electrons that will weigh 1 g = (1 × 10–3 kg)

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3381/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_24462582.gif

= 0.1098 × 10–3 + 31

= 0.1098 × 1028

= 1.098 × 1027

(ii) Mass of one electron = 9.10939 × 10–31 kg

Mass of one mole of electron = (6.022 × 1023) × (9.10939 ×10–31 kg)

= 5.48 × 10–7 kg

Charge on one electron = 1.6022 × 10–19 coulomb

Charge on one mole of electron = (1.6022 × 10–19 C) (6.022 × 1023)

= 9.65 × 104 C

Question 2.2:

(i) Calculate the total number of electrons present in one mole of methane.

(ii) Find (a) the total number and (b) the total mass of neutrons in 7 mg of 14C.

(Assume that mass of a neutron = 1.675 × 10–27 kg).

(iii) Find (a) the total number and (b) the total mass of protons in 34 mg of NH3 at STP.

Will the Answer change if the temperature and pressure are changed?

Answer:

(i) Number of electrons present in 1 molecule of methane (CH4)

{1(6) + 4(1)} = 10

Number of electrons present in 1 mole i.e., 6.023 × 1023 molecules of methane

= 6.022 × 1023 × 10 = 6.022 × 1024

(ii) (a) Number of atoms of 14C in 1 mole= 6.023 × 1023

Since 1 atom of 14C contains (14 – 6) i.e., 8 neutrons, the number of neutrons in 14 g of 14C is (6.023 × 1023) ×8. Or, 14 g of 14C contains (6.022 × 1023 × 8) neutrons.

Number of neutrons in 7 mg

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3382/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m7fe3dc1a.gif

= 2.4092 × 1021

(b) Mass of one neutron = 1.67493 × 10–27 kg

Mass of total neutrons in 7 g of 14C

= (2.4092 × 1021) (1.67493 × 10–27 kg)

= 4.0352 × 10–6 kg

(iii) (a) 1 mole of NH3 = {1(14) + 3(1)} g of NH3

= 17 g of NH3

= 6.022× 1023 molecules of NH3

Total number of protons present in 1 molecule of NH3

= {1(7) + 3(1)}

= 10

Number of protons in 6.023 × 1023 molecules of NH3

= (6.023 × 1023) (10)

= 6.023 × 1024

⇒ 17 g of NH3 contains (6.023 × 1024) protons.

Number of protons in 34 mg of NH3

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3382/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m6999dafe.gif

= 1.2046 × 1022

(b) Mass of one proton = 1.67493 × 10–27 kg

Total mass of protons in 34 mg of NH3

= (1.67493 × 10–27 kg) (1.2046 × 1022)

= 2.0176 × 10–5 kg

The number of protons, electrons, and neutrons in an atom is independent of temperature and pressure conditions. Hence, the obtained values will remain unchanged if the temperature and pressure is changed.

Question 2.3:

How many neutrons and protons are there in the following nuclei?

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m4c679b53.gifhttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_7027ceb7.gifhttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_48acca71.gifhttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_7468777b.gif ,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_7e503425.gif

Answer:

136C:

Atomic mass = 13

Atomic number = Number of protons = 6

Number of neutrons = (Atomic mass) – (Atomic number)

= 13 – 6 = 7

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_7027ceb7.gif :

Atomic mass = 16

Atomic number = 8

Number of protons = 8

Number of neutrons = (Atomic mass) – (Atomic number)

= 16 – 8 = 8

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_48acca71.gif :

Atomic mass = 24

Atomic number = Number of protons = 12

Number of neutrons = (Atomic mass) – (Atomic number)

= 24 – 12 = 12

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_7468777b.gif :

Atomic mass = 56

Atomic number = Number of protons = 26

Number of neutrons = (Atomic mass) – (Atomic number)

= 56 – 26 = 30

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3383/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_7e503425.gif :

Atomic mass = 88

Atomic number = Number of protons = 38

Number of neutrons = (Atomic mass) – (Atomic number)

= 88 – 38 = 50

Question 2.4:

Write the complete symbol for the atom with the given atomic number (Z) and Atomic mass (A)

(i) Z = 17, A = 35

(ii) Z = 92, A = 233

(iii) Z = 4, A = 9

Answer:

(i) https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3384/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m40181ba7.gif  (ii) https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3384/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_66940449.gif  (iii) https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3384/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m9e347e.gif

Question 2.5:

Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm. Calculate the frequency (ν) and wave number (https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3385/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m477b386c.gif ) of the yellow light.

Answer:

From the expression,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3385/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_9b21101.gif

We get,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3385/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_13a634d6.gif  …….. (i)

Where,

ν = frequency of yellow light

c = velocity of light in vacuum = 3 × 108 m/s

λ = wavelength of yellow light = 580 nm = 580 × 10–9 m

Substituting the values in expression (i):

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3385/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_40670f99.gif

Thus, frequency of yellow light emitted from the sodium lamp

= 5.17 × 1014 s–1

Wave number of yellow light, https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3385/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m1ee1af36.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3385/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m7ce0a22b.gif

Question 2.6:

Find energy of each of the photons which

(i) correspond to light of frequency 3× 1015 Hz.

(ii) have wavelength of 0.50 Å.

Answer:

(i) Energy (E) of a photon is given by the expression,

E = https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3386/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_4d946c65.gif

Where,

h = Planck’s constant = 6.626 × 10–34 Js

ν = frequency of light = 3 × 1015 Hz

Substituting the values in the given expression of E:

E = (6.626 × 10–34) (3 × 1015)

E = 1.988 × 10–18 J

(ii) Energy (E) of a photon having wavelength (λ) is given by the expression,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3386/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_649adfeb.gif

h = Planck’s constant = 6.626 × 10–34 Js

c = velocity of light in vacuum = 3 × 108 m/s

Substituting the values in the given expression of E:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3386/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m1c3c05b5.gif

Question 2.7:

Calculate the wavelength, frequency and wave number of a light wave whose period is 2.0 × 10–10 s.

Answer:

Frequency (ν) of light https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3387/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_68d905db.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3387/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m5243a4ff.gif

Wavelength (λ) of light https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3387/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_me4ae28e.gif

Where,

c = velocity of light in vacuum = 3×108 m/s

Substituting the value in the given expression of λ:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3387/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_mf64ae.gif

Wave number https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3387/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_36a27ad6.gif  of light https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3387/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_17881e8e.gif https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3387/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_208f2488.gif

Question 2.8:

What is the number of photons of light with a wavelength of 4000 pm that provide 1 J of energy?

Answer:

Energy (E) of a photon = hν

Energy (En) of ‘n’ photons = nhν

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3388/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_mbc1a21d.gif

Where,

λ = wavelength of light = 4000 pm = 4000 ×10–12 m

c = velocity of light in vacuum = 3 × 10m/s

h = Planck’s constant = 6.626 × 10–34 Js

Substituting the values in the given expression of n:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3388/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_3321c76.gif

Hence, the number of photons with a wavelength of 4000 pm and energy of 1 J are 2.012 × 1016.

Question 2.9:

A photon of wavelength 4 × 10–7 m strikes on metal surface, the work function of the metal being 2.13 eV. Calculate (i) the energy of the photon (eV), (ii) the kinetic energy of the emission, and (iii) the velocity of the photoelectron (1 eV= 1.6020 × 10–19 J).

Answer:

(i) Energy (E) of a photon = hνhttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3389/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_211172a2.gif

Where,

h = Planck’s constant = 6.626 × 10–34 Js

c = velocity of light in vacuum = 3 × 10m/s

λ = wavelength of photon = 4 × 10–7 m

Substituting the values in the given expression of E:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3389/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m1bf70651.gif

Hence, the energy of the photon is 4.97 × 10–19 J.

(ii) The kinetic energy of emission Ek is given by

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3389/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_61bf6ca3.gif

= (3.1020 – 2.13) eV

= 0.9720 eV

Hence, the kinetic energy of emission is 0.97 eV.

(iii) The velocity of a photoelectron (ν) can be calculated by the expression,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3389/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_70ef49c1.gif

Where, https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3389/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_12febb5b.gif  is the kinetic energy of emission in Joules and ‘m’ is the mass of the photoelectron. Substituting the values in the given expression of v:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3389/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m6a733d02.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3389/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m59a08790.gif

v = 5.84 × 105 ms–1

Hence, the velocity of the photoelectron is 5.84 × 105 ms–1.

Question 2.10:

Electromagnetic radiation of wavelength 242 nm is just sufficient to ionise the sodium atom. Calculate the ionisation energy of sodium in kJ mol–1.

Answer:

Energy of sodium (E)

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3390/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_3150367e.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3390/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_mb189406.gif

= 4.947 × 105 J mol–1

= 494.7 × 103 J mol–1

= 494 kJ mol–1

Question 2.11:

A 25 watt bulb emits monochromatic yellow light of wavelength of 0.57μm. Calculate the rate of emission of quanta per second.

Answer:

Power of bulb, P = 25 Watt = 25 Js–1

Energy of one photon, E = hν https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3391/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_211172a2.gif

Substituting the values in the given expression of E:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3391/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_6668dd54.gif

E = 34.87 × 10–20 J

Rate of emission of quanta per second

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3391/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m4defeed4.gif

Question 2.12:

Electrons are emitted with zero velocity from a metal surface when it is exposed to radiation of wavelength 6800 Å. Calculate threshold frequency (https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3392/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_39f063e2.gif ) and work function (W0) of the metal.

Answer:

Threshold wavelength of radian https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3392/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m32d8be59.gif = 6800 × 10–10 m

Threshold frequency https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3392/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_e2323aa.gif of the metal

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3392/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m77a69078.gif = 4.41 × 1014 s–1

Thus, the threshold frequency https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3392/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_e2323aa.gif  of the metal is 4.41 × 1014 s–1.

Hence, work function (W0) of the metal = hν0

= (6.626 × 10–34 Js) (4.41 × 1014 s–1)

= 2.922 × 10–19 J

Question 2.13:

What is the wavelength of light emitted when the electron in a hydrogen atom undergoes transition from an energy level with = 4 to an energy level with = 2?

Answer:

The ni = 4 to nf = 2 transition will give rise to a spectral line of the Balmer series. The energy involved in the transition is given by the relation,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3453/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m537441b9.gif

Substituting the values in the given expression of E:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3453/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m1d09f0be.gif

E = – (4.0875 × 10–19 J)

The negative sign indicates the energy of emission.

Wavelength of light emitted https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3453/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m771996c5.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3453/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m43098078.gif

Substituting the values in the given expression of λ:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3453/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_15d59ac1.gif

Also Read : Page-No-66:-Chapter-2-Structure-Of-Atom-class-11-ncert-solutions-Chemistry

SaraNextGen