SaraNextGen.Com
Updated By SaraNextGen
On March 11, 2024, 11:35 AM

Page No 66: - Chapter 2 Structure Of Atom class 11 ncert solutions Chemistry - SaraNextGen [2024]


Question 2.14:

How much energy is required to ionise a H atom if the electron occupies n = 5 orbit? Compare your Answer with the ionization enthalpy of H atom (energy required to remove the electron from n =1 orbit).

Answer:

The expression of energy is given by,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3454/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_42a7aedd.gif

Where,

Z = atomic number of the atom

n = principal quantum number

For ionization from n1 = 5 to https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3454/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_75045718.gif ,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3454/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m3ef85888.gif

Hence, the energy required for ionization from n = 5 to n =

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3454/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_9594975.gif  is 8.72 × 10–20 J.

Energy required for n1 = 1 to n =

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3454/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_9594975.gif ,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3454/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m2cc90235.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3454/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_7f19a427.gif

Hence, less energy is required to ionize an electron in the 5th orbital of hydrogen atom as compared to that in the ground state.

Question 2.15:

What is the maximum number of emission lines when the excited electron of an H atom in n = 6 drops to the ground state?

Answer:

When the excited electron of an H atom in n = 6 drops to the ground state, the following transitions are possible:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3456/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_655b2b60.jpg

Hence, a total number of (5 + 4 + 3 + 2 + 1) 15 lines will be obtained in the emission spectrum.

The number of spectral lines produced when an electron in the nth level drops down to the ground state is given byhttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3456/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_5f4dd6b6.gif .

Given,

n = 6

Number of spectral lines https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3456/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m459b471c.gif = 15

Question 2.16:

(i) The energy associated with the first orbit in the hydrogen atom is –2.18 × 10–18 J atom–1. What is the energy associated with the fifth orbit?

(ii) Calculate the radius of Bohr’s fifth orbit for hydrogen atom.

Answer:

(i) Energy associated with the fifth orbit of hydrogen atom is calculated as:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3457/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m360a35f2.gif

E5 = –8.72 × 10–20 J

(ii) Radius of Bohr’s nth orbit for hydrogen atom is given by,

rn = (0.0529 nm) n2

For,

n = 5

r5 = (0.0529 nm) (5)2

r5 = 1.3225 nm

Question 2.17:

Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.

Answer:

For the Balmer series, ni = 2. Thus, the expression of wavenumber https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/5372/chapter%202._html_36a27ad6.gif is given by,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/5372/chapter%202._html_66bbceef.gif

Wave number https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/5372/chapter%202._html_36a27ad6.gif  is inversely proportional to wavelength of transition. Hence, for the longest wavelength transition, https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/5372/chapter%202._html_m477b386c.gif  has to be the smallest.

For https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/5372/chapter%202._html_m477b386c.gif  to be minimum, nf should be minimum. For the Balmer series, a transition from ni = 2 to nf = 3 is allowed. Hence, taking nf = 3, we get:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/5372/chapter%202._html_3291829d.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/5372/chapter%202._html_m477b386c.gif  = 1.5236 × 106 m–1

Question 2.18:

What is the energy in joules, required to shift the electron of the hydrogen atom from the first Bohr orbit to the fifth Bohr orbit and what is the wavelength of the light emitted when the electron returns to the ground state? The ground state electron energy is –2.18 × 10–11 ergs.

Answer:

Energy (E) of the nth Bohr orbit of an atom is given by,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3459/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_42a7aedd.gif

Where,

Z = atomic number of the atom

Ground state energy = – 2.18 × 10–11 ergs

= –2.18 × 10–11 × 10–7 J

= – 2.18 × 10–18 J

Energy required to shift the electron from n = 1 to n = 5 is given as:

ΔE5 – E1

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3459/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m67adc228.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3459/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_1c8bc200.gif

Question 2.19:

The electron energy in hydrogen atom is given by En = (–2.18 × 10–18)/n2 J. Calculate the energy required to remove an electron completely from the n = 2 orbit. What is the longest wavelength of light in cm that can be used to cause this transition?

Answer:

Given,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3460/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m310b1c4e.gif

Energy required for ionization from n = 2 is given by,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3460/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m652a33da.gif

= 0.545 × 10–18 J

ΔE = 5.45 × 10–19 J

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3460/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m3fdaac00.gif

Here, λ is the longest wavelength causing the transition.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3460/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m1e751603.gif

= 3647 × 10–10 m

= 3647 Å

Question 2.20:

Calculate the wavelength of an electron moving with a velocity of 2.05 × 107 ms–1.

Answer:

According to de Broglie’s equation,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3461/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m72986416.gif

Where,

λ = wavelength of moving particle

= mass of particle

v = velocity of particle

h = Planck’s constant

Substituting the values in the expression of λ:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3461/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_5974c5d8.gif

Hence, the wavelength of the electron moving with a velocity of 2.05 × 107 ms–1 is 3.548 × 10–11 m.

Question 2.21:

The mass of an electron is 9.1 × 10–31 kg. If its K.E. is 3.0 × 10–25 J, calculate its wavelength.

Answer:

From de Broglie’s equation,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3462/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m72986416.gif

Given,

Kinetic energy (K.E) of the electron = 3.0 × 10–25 J

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3462/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_3a82ad8e.gif

Substituting the value in the expression of λ:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3462/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_m2264c6a7.gif

Hence, the wavelength of the electron is 8.9625 × 10–7 m.

Question 2.22:

Which of the following are isoelectronic species i.e., those having the same number of electrons?

Na+, K+, Mg2+, Ca2+, S2–, Ar

Answer:

Isoelectronic species have the same number of electrons.

Number of electrons in sodium (Na) = 11

Number of electrons in (Na+) = 10

A positive charge denotes the loss of an electron.

Similarly,

Number of electrons in K+ = 18

Number of electrons in Mg2+ = 10

Number of electrons in Ca2+ = 18

A negative charge denotes the gain of an electron by a species.

Number of electrons in sulphur (S) = 16

∴ Number of electrons in S2- = 18

Number of electrons in argon (Ar) = 18

Hence, the following are isoelectronic species:

1) Na+ and Mg2+ (10 electrons each)

2) K+, Ca2+, S2– and Ar (18 electrons each)

Question 2.23:

(i) Write the electronic configurations of the following ions: (a) H– (b) Na+ (c) O2–(d) F

(ii) What are the atomic numbers of elements whose outermost electrons are represented by (a) 3s(b) 2p3 and (c) 3p5?

(iii) Which atoms are indicated by the following configurations?

(a) [He] 2s1 (b) [Ne] 3s2 3p3 (c) [Ar] 4s2 3d1.

Answer:

(i) (a) H ion

The electronic configuration of H atom is 1s1.

A negative charge on the species indicates the gain of an electron by it.

∴ Electronic configuration of H = 1s2

(b) Naion

The electronic configuration of Na atom is 1s2 2s2 2p6 3s1.

A positive charge on the species indicates the loss of an electron by it.

∴ Electronic configuration of Na+ = 1s2 2s2 2p6 3s0 or 1s2 2s2 2p6

(c) O2– ion

The electronic configuration of 0 atom is 1s2 2s2 2p4.

A dinegative charge on the species indicates that two electrons are gained by it.

∴ Electronic configuration of O2– ion = 1s2 2s2 p6

(d) F ion

The electronic configuration of F atom is 1s2 2s2 2p5.

A negative charge on the species indicates the gain of an electron by it.

∴ Electron configuration of F ion = 1s2 2s2 2p6

(ii) (a) 3s1

Completing the electron configuration of the element as

1s2 2s2 2p6 3s1.

∴ Number of electrons present in the atom of the element

= 2 + 2 + 6 + 1 = 11

∴ Atomic number of the element = 11

(b) 2p3

Completing the electron configuration of the element as

1s2 2s2 2p3.

∴ Number of electrons present in the atom of the element = 2 + 2 + 3 = 7

∴ Atomic number of the element = 7

(c) 3p5

Completing the electron configuration of the element as

1s2 2s2 2p6 3s2 3p5∴ Number of electrons present in the atom of the element = 2 + 2 + 6+2+5 = 17

∴ Atomic number of the element = 17

(iii) (a) [He] 2s1

The electronic configuration of the element is [He] 2s1 = 1s2 2s1.

∴ Atomic number of the element = 3

Hence, the element with the electronic configuration [He] 2s1 is lithium (Li).

(b) [Ne] 3s2 3p3

The electronic configuration of the element is [Ne] 3s2 3p3= 1s2 2s2 2p6 3s2 3p3.

∴ Atomic number of the element = 15

Hence, the element with the electronic configuration [Ne] 3s2 3pis phosphorus (P).

(c) [Ar] 4s2 3d1

The electronic configuration of the element is [Ar] 4s2 3d1= 1s2 2s2 2p6 3s2 3p6 4s2 3d1.

∴ Atomic number of the element = 21

Hence, the element with the electronic configuration [Ar] 4s2 3dis scandium (Sc).

Question 2.24:

What is the lowest value of n that allows g orbitals to exist?

Answer:

For g-orbitals, = 4.

As for any value ‘n’ of principal quantum number, the Azimuthal quantum number (l) can have a value from zero to (n – 1).

∴ For l = 4, minimum value of n = 5

Question 2.25:

An electron is in one of the 3d orbitals. Give the possible values of nl and ml for this electron.

Answer:

For the 3d orbital:

Principal quantum number (n) = 3

Azimuthal quantum number (l) = 2

Magnetic quantum number (ml) = – 2, – 1, 0, 1, 2

Question 2.26:

An atom of an element contains 29 electrons and 35 neutrons. Deduce (i) the number of protons and (ii) the electronic configuration of the element.

Answer:

(i) For an atom to be neutral, the number of protons is equal to the number of electrons.

∴ Number of protons in the atom of the given element = 29

(ii) The electronic configuration of the atom is

1s2 2s2 2p6 3s2 3p6 4s2 3d10.

Question 2.27:

Give the number of electrons in the specieshttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3468/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_561e1e04.gif , Hand https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3468/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_3bf45b18.gif

Answer:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3468/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_561e1e04.gif :

Number of electrons present in hydrogen molecule (H2) = 1 + 1 = 2

∴ Number of electrons in https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3468/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_561e1e04.gif = 2 – 1 = 1

H2:

Number of electrons in H2 = 1 + 1 = 2

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3468/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_3bf45b18.gif :

Number of electrons present in oxygen molecule (O2) = 8 + 8 = 16

∴ Number of electrons in https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/3468/NCERT%20Solution_7-10-2008_Vidushi_11_Chemistry_2_67_SJT_html_3bf45b18.gif = 16 – 1 = 15

Question 2.28:

(i) An atomic orbital has = 3. What are the possible values of l and ml ?

(ii) List the quantum numbers (ml and l) of electrons for 3d orbital.

(iii) Which of the following orbitals are possible?

1p, 2s, 2p and 3f

Answer:

(i) n = 3 (Given)

For a given value of ncan have values from 0 to (n – 1).

∴ For n = 3

l = 0, 1, 2

For a given value of lml can have (2l + 1) values.

For l = 0, m = 0

l = 1, m = – 1, 0, 1

l = 2, m = – 2, – 1, 0, 1, 2

∴ For n = 3

l = 0, 1, 2

m0 = 0

m1 = – 1, 0, 1

m2 = – 2, – 1, 0, 1, 2

(ii) For 3d orbital, l = 2.

For a given value of lmlcan have (2l + 1) values i.e., 5 values.

∴ For = 2

m2 = – 2, – 1, 0, 1, 2

(iii) Among the given orbitals only 2s and 2p are possible. 1p and 3cannot exist.

For p-orbital, l = 1.

For a given value of ncan have values from zero to (n – 1).

∴ For l is equal to 1, the minimum value of n is 2.

Similarly,

For f-orbital, = 4.

For l = 4, the minimum value of is 5.

Hence, 1and 3f do not exist.

Question 2.29:

Using spd notations, describe the orbital with the following quantum numbers.

(a) n = 1, = 0; (b) n = 3; l =1 (c) = 4; l = 2; (d) n = 4; l =3.

Answer:

(a) n = 1, l = 0 (Given)

The orbital is 1s.

(b) For n = 3 and l = 1

The orbital is 3p.

(c) For n = 4 and l = 2

The orbital is 4d.

(d) For n = 4 and l = 3

The orbital is 4f.

Question 2.30:

Explain, giving reasons, which of the following sets of quantum numbers are not possible.

 

a

n = 0

l = 0

ml = 0

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/8174/Grade%2011_Chapter-2_html_m24ec011d.gif

b

n = 1

l = 0

ml = 0

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/8174/Grade%2011_Chapter-2_html_c42db8c.gif

c

n = 1

= 1

ml = 0

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/8174/Grade%2011_Chapter-2_html_m24ec011d.gif

d

n = 2

l = 1

ml = 0

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/8174/Grade%2011_Chapter-2_html_c42db8c.gif

e

= 3

= 3

ml = – 3

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/8174/Grade%2011_Chapter-2_html_m24ec011d.gif

f

= 3

= 1

ml = 0

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/195/8174/Grade%2011_Chapter-2_html_m24ec011d.gif

(a) The given set of quantum numbers is not possible because the value of the principal quantum number (n) cannot be zero.Answer:

(b) The given set of quantum numbers is possible.

(c) The given set of quantum numbers is not possible.

For a given value of n, ‘l’ can have values from zero to (n – 1).

For n = 1, l = 0 and not 1.

(d) The given set of quantum numbers is possible.

(e) The given set of quantum numbers is not possible.

For n = 3,

l = 0 to (3 – 1)

l = 0 to 2 i.e., 0, 1, 2

(f) The given set of quantum numbers is possible.

Also Read : Page-No-67:-Chapter-2-Structure-Of-Atom-class-11-ncert-solutions-Chemistry

SaraNextGen