SaraNextGen.Com
Updated By SaraNextGen
On March 11, 2024, 11:35 AM

Page No 226: - Chapter 7 Equilibrium class 11 ncert solutions Chemistry - SaraNextGen [2024]


Question 7.17:

Kp = 0.04 atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of C2H6 when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8117/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m3efb6659.gif

Answer:

Let p be the pressure exerted by ethene and hydrogen gas (each) at equilibrium.

Now, according to the reaction,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8117/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_2e850809.gif

We can write,

https://img-nm.mnimgs.com/img/study_content/editlive_ncert/77/2012_01_05_10_34_47/correction.png

Hence, at equilibrium,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8117/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_64c3e63e.gif

Question 7.18:

Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8118/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_db7d4a4.gif

(i) Write the concentration ratio (reaction quotient), Qc, for this reaction (note: water is not in excess and is not a solvent in this reaction)

(ii) At 293 K, if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.

(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at 293 K, 0.214 mol of ethyl acetate is found after sometime. Has equilibrium been reached?

Answer:

(i) Reaction quotient, https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8118/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_mb46d21e.gif

(ii) Let the volume of the reaction mixture be V. Also, here we will consider that water is a solvent and is present in excess.

The given reaction is:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8118/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m264803ad.gif

Therefore, equilibrium constant for the given reaction is:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8118/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m23dbb4bb.gif

(iii) Let the volume of the reaction mixture be V.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8118/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_407e4d2f.gif

Therefore, the reaction quotient is,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8118/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m2d9ad089.gif

Sincehttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8118/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m1e255a63.gif , equilibrium has not been reached.

Question 7.19:

A sample of pure PCl5 was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of PCl5 was found to be 0.5 × 10–1 mol L–1. If value of Kc is 8.3 × 10–3, what are the concentrations of PCl3 and Cl2 at equilibrium?

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8119/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m63566204.gif

Answer:

Let the concentrations of both PCl3 and Cl2 at equilibrium be x molL–1. The given reaction is:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8119/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m708d563c.gif

Now we can write the expression for equilibrium as:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8119/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_55a92daf.gif

Therefore, at equilibrium,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8119/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_66e770c0.gif

Question 7.20:

One of the reactions that takes place in producing steel from iron ore is the reduction of iron (II) oxide by carbon monoxide to give iron metal and CO2.

FeO (s) + CO (g) https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8120/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m71c07a82.gif  Fe (s) + CO2 (g); Kp= 0.265 at 1050 K.

What are the equilibrium partial pressures of CO and CO2 at 1050 K if the initial partial pressures are: pCO = 1.4 atm and https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8120/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m6961b670.gif = 0.80 atm?

Answer:

For the given reaction,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8120/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_1588fbdb.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8120/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m274488ad.gif

Sincehttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8120/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_3ed51698.gif , the reaction will proceed in the backward direction.

Therefore, we can say that the pressure of CO will increase while the pressure of CO2 will decrease.

Now, let the increase in pressure of CO = decrease in pressure of CObe p.

Then, we can write,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8120/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m4a410739.gif

Therefore, equilibrium partial of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8120/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_36f080cd.gif

And, equilibrium partial pressure of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8120/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m50eafb7d.gif

Question 7.21:

Equilibrium constant, Kc for the reaction

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8121/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m4c536c3a.gif at 500 K is 0.061.

At a particular time, the analysis shows that composition of the reaction mixture is 3.0 mol L–1 N2, 2.0 mol L–1 H2 and 0.5 mol L–1 NH3. Is the reaction at equilibrium? If not in which direction does the reaction tend to proceed to reach equilibrium?

Answer:

The given reaction is:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8121/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_30484f06.gif

Now, we know that,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8121/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m251c4ec5.gif

Sincehttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8121/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m38d8d464.gif , the reaction is not at equilibrium.

Since https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8121/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m1e255a63.gif , the reaction will proceed in the forward direction to reach equilibrium.

Question 7.22:

Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8122/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_4af613be.gif

for which Kc= 32 at 500 K. If initially pure BrCl is present at a concentration of 3.3 × 10–3 molL–1, what is its molar concentration in the mixture at equilibrium?

Answer:

Let the amount of bromine and chlorine formed at equilibrium be x. The given reaction is:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8122/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m2fb23082.gif

Now, we can write,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8122/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m5d0e532.gif

Therefore, at equilibrium,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8122/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m6d8d81a1.gif

Question 7.23:

At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO2 in equilibrium with solid carbon has 90.55% CO by mass

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8123/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m545d0840.gif

Calculate Kc for this reaction at the above temperature.

Answer:

Let the total mass of the gaseous mixture be 100 g.

Mass of CO = 90.55 g

And, mass of CO2 = (100 – 90.55) = 9.45 g

Now, number of moles of CO, https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8123/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_57666e96.gif

Number of moles of CO­2https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8123/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_46ddd995.gif

Partial pressure of CO,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8123/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m5d199c.gif

Partial pressure of CO2,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8123/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m25dd99a8.gif

For the given reaction,

Δ= 2 – 1 = 1

We know that,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8123/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_40bfe8c8.gif

Question 7.24:

Calculate a) ΔG°and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298 K

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8124/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m4ce57d28.gif

where ΔfG° (NO2) = 52.0 kJ/mol

ΔfG° (NO) = 87.0 kJ/mol

ΔfG° (O2) = 0 kJ/mol

Answer:

(a) For the given reaction,

ΔG° = ΔG°( Products) – ΔG°( Reactants)

ΔG° = 52.0 – {87.0 + 0}

= – 35.0 kJ mol–1

(b) We know that,

ΔG° = RT log Kc

ΔG° = 2.303 RT log Kc

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8124/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_65796e44.gif

Hence, the equilibrium constant for the given reaction Kc is 1.36 × 106

Also Read : Page-No-227:-Chapter-7-Equilibrium-class-11-ncert-solutions-Chemistry

SaraNextGen