SaraNextGen.Com
Updated By SaraNextGen
On March 11, 2024, 11:35 AM

Page No 230: - Chapter 7 Equilibrium class 11 ncert solutions Chemistry - SaraNextGen [2024]


Question 7.62:

A 0.02 M solution of pyridinium hydrochloride has pH = 3.44. Calculate the ionization constant of pyridine

Answer:

pH = 3.44

We know that,

pH = – log [H+]

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8162/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_2006d87.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8162/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m2b02dae7.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8162/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m56db1ec7.gif

Question 7.63:

Predict if the solutions of the following salts are neutral, acidic or basic:

NaCl, KBr, NaCN, NH4NO3, NaNO2 and KF

Answer:

(i) NaCl:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8163/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_79c12ac4.gif

Therefore, it is a neutral solution.

(ii) KBr:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8163/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m151b19d0.gif

Therefore, it is a neutral solution.

(iii) NaCN:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8163/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m5f3aef75.gif

Therefore, it is a basic solution.

(iv) NH4NO3

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8163/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m648beda3.gif

Therefore, it is an acidic solution.

(v) NaNO2

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8163/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_14ae20af.gif

Therefore, it is a basic solution.

(vi) KF

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8163/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_2aaf1a60.gif

Therefore, it is a basic solution.

Question 7.64:

The ionization constant of chloroacetic acid is 1.35 × 10–3. What will be the pH of 0.1M acid and its 0.1M sodium salt solution?

Answer:

It is given that Ka for ClCH2COOH is 1.35 × 10–3.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8164/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m462cd3b3.gif

ClCH2COONa is the salt of a weak acid i.e., ClCH2COOH and a strong base i.e., NaOH.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8164/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_me640294.gif

Question 7.65:

Ionic product of water at 310 K is 2.7 × 10–14. What is the pH of neutral water at this temperature?

Answer:

Ionic product,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8165/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_236bd0fd.gif

Hence, the pH of neutral water is 6.78.

Question 7.66:

Calculate the pH of the resultant mixtures:

a) 10 mL of 0.2M Ca(OH)2 + 25 mL of 0.1M HCl

b) 10 mL of 0.01M H2SO4 + 10 mL of 0.01M Ca(OH)2

c) 10 mL of 0.1M H2SO4 + 10 mL of 0.1M KOH

Answer:

(a) https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_3e97f55b.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_671fdd94.gif

Thus, excess of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_389edeca.gif  = .0015 mol

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_26f946b1.gif

(b) https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m29123c6c.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_15d5ea3b.gif

Since there is neither an excess of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m10addbab.gif orhttps://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_389edeca.gif , the solution is neutral. Hence, pH = 7.

(c) https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m330984c.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m7993860b.gif

Excess of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m10addbab.gif = .001 mol

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8166/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_35e3339b.gif

= 1.30

Question 7.67:

Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298K from their solubility product constants given in Table 7.9 (page 221). Determine also the molarities of individual ions.

Answer:

(1) Silver chromate:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m6823c87b.gif

Let the solubility of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m462955da.gif be s.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_2eae79ee.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_9af7bd9.gif

Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m173dd387.gif = 2s = 2 × 0.65 × 10–4 = 1.30 × 10–4 M

Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_22700909.gifs = 0.65 × 10–4 M

(2) Barium chromate:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m3cebbbec.gif

Let s be the solubility of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_186bdc8a.gif

Thus, https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m2f9e3be1.gif  = s and https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m3fe01144.gif  = s

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m32d7f9a1.gif

Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m66ef56c6.gif = Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m42e338f3.gif

(3) Ferric hydroxide:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_677c8537.gif

Let s be the solubility of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m72e8d633.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m6b534de1.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m5a8a8b01.gif

Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_14f490c5.gif

Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_44da3097.gif

(4) Lead chloride:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m21a8e29a.gif

Let KSP be the solubility of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_69631468.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m5ea0cce8.gif

Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_e0b4599.gif

Molarity of chloride =https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m55a14ebd.gif

(5) Mercurous iodide:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_58efae0d.gif

Let s be the solubility of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m734fbf20.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_2044bc2f.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_2f7fec0b.gif

Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_21e7f2f0.gif

Molarity of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8167/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_5b9b4ca3.gif

Question 7.68:

The solubility product constant of Ag2CrO4 and AgBr are 1.1 × 10–12 and 5.0 × 10–13 respectively. Calculate the ratio of the molarities of their saturated solutions.

Answer:

Let s be the solubility of Ag2CrO4.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8168/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m1b6a6264.gif

Let s´ be the solubility of AgBr.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8168/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m728e773d.gif

Therefore, the ratio of the molarities of their saturated solution is https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8168/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_5e57fa46.gif

Question 7.69:

Equal volumes of 0.002 M solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate? (For cupric iodate Ksp = 7.4 × 10–8).

Answer:

When equal volumes of sodium iodate and cupric chlorate solutions are mixed together, then the molar concentrations of both solutions are reduced to half i.e., 0.001 M.

Then,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8169/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m262ad715.gif

Now, the solubility equilibrium for copper iodate can be written as:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8169/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_32bb12a0.gif

Ionic product of copper iodate:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8169/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_745863a0.gif

Since the ionic product (1 × 10–9) is less than Ksp (7.4 × 10–8), precipitation will not occur.

Question 7.70:

The ionization constant of benzoic acid is 6.46 × 10–5 and Ksp for silver benzoate is 2.5 × 10–13. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water?

Answer:

Since pH = 3.19,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8170/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_16be7e27.gif

Let the solubility of C6H5COOAg be x mol/L.

Then,

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8170/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_c24b6b0.gif

Thus, the solubility of silver benzoate in a pH 3.19 solution is 1.66 × 10–6 mol/L.

Now, let the solubility of C6H5COOAg be x’ mol/L.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8170/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m44e31d93.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8170/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_72afc8f6.gif

Hence, C6H5COOAg is approximately 3.317 times more soluble in a low pH solution.

Question 7.71:

What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, Ksp = 6.3 × 10–18).

Answer:

Let the maximum concentration of each solution be x mol/L. After mixing, the volume of the concentrations of each solution will be reduced to half i.e.,https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8171/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_319911b4.gif .

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8171/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m24f0d3ef.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8171/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m55bf1650.gif

If the concentrations of both solutions are equal to or less than 5.02 × 10–9 M, then there will be no precipitation of iron sulphide.

Question 7.72:

What is the minimum volume of water required to dissolve 1g of calcium sulphate at 298 K? (For calcium sulphate, Ksp is 9.1 × 10–6).

Answer:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8172/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_79926acf.gif

Let the solubility of CaSO4 be s.

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8172/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m5a686cc1.gif

Molecular mass of CaSO4 = 136 g/mol

Solubility of https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8172/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_7c1935fc.gif  in gram/L = 3.02 × 10–3 × 136

= 0.41 g/L

This means that we need 1L of water to dissolve 0.41g of CaSO4

Therefore, to dissolve 1g of CaSO4 we require https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8172/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m1e03fda6.gif of water.

Question 7.73:

The concentration of sulphide ion in 0.1M HCl solution saturated with hydrogen sulphide is 1.0 × 10–19 M. If 10 mL of this is added to 5 mL of 0.04 M solution of the following: FeSO4, MnCl2, ZnCl2 and CdCl2. in which of these solutions precipitation will take place?

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8173/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_14dcdbc.gif

Answer:

For precipitation to take place, it is required that the calculated ionic product exceeds the Ksp value.

Before mixing:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8173/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_m2491c3d5.gif

After mixing:

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8173/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_1b3e316b.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8173/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_361961f7.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/11/13/200/8173/NS_06-11-08_Utpal_11_Chemstry_7_73_GSX_SG_html_53ab1570.gif

This ionic product exceeds the Ksp of Zns and CdS. Therefore, precipitation will occur in CdCl2 and ZnCl2 solutions.

Also Read : INTRODUCTION-Chapter-8-Redox-Reactions-class-11-ncert-solutions-Chemistry

SaraNextGen