# For hyperbolic trajectory of a satellite of mass $m$ having velocity $V$ at a distance $r$ from the center of earth ( $G:$ gravitational constant, $M:$ mass of earth), which one of the following relations is true? (A) $\quad \frac{1}{2} m V^{2}>\frac{G M m}{r}$ (B) $\quad \frac{1}{2} m V^{2}<\frac{G M m}{r}$ (C) $\quad \frac{1}{2} m V^{2}=\frac{G M m}{r}$ (D) $\quad \frac{1}{2} m V^{2}<\frac{2 G M m}{r}$

## Question ID - 155375 :- For hyperbolic trajectory of a satellite of mass $m$ having velocity $V$ at a distance $r$ from the center of earth ( $G:$ gravitational constant, $M:$ mass of earth), which one of the following relations is true? (A) $\quad \frac{1}{2} m V^{2}>\frac{G M m}{r}$ (B) $\quad \frac{1}{2} m V^{2}<\frac{G M m}{r}$ (C) $\quad \frac{1}{2} m V^{2}=\frac{G M m}{r}$ (D) $\quad \frac{1}{2} m V^{2}<\frac{2 G M m}{r}$

3537

(A) $\quad \frac{1}{2} m V^{2}>\frac{G M m}{r}$

Next Question :

For conventional airplanes, which one of the following is true regarding roll
control derivative $\left(C_{l \delta_{r}}=\frac{\partial C_{1}}{\partial \delta_{r}}\right)$ and yaw control derivative $\left(C_{n \delta_{r}}=\frac{\partial C_{n}}{\partial \delta_{r}}\right),$ where
$\delta_{r}$ is rudder deflection?

(A) $\quad C_{/ \delta_{r}}>0$ and $C_{n \delta_{r}}<0$
(B) $C_{I \delta_{r}}<0$ and $C_{n \delta_{e}}>0$
(C) $\quad C_{T \delta_{r}}<0$ and $C_{n \delta_{r}}<0$
(D) $\quad C_{I \delta_{s}}>0$ and $C_{n \delta_{r}}>0$ 