The vector $\overrightarrow{\mathrm{u}}$ is defined as $\overrightarrow{\mathrm{u}}=\mathrm{ye}_{\mathrm{x}}-\mathrm{xe}_{\mathrm{y}},$ where $\hat{\mathrm{e}}_{\mathrm{x}}$ and $\hat{\mathrm{e}}_{\mathrm{y}}$ are the unit vectors along $\mathrm{x}$ and $\mathrm{y}$ directions, respectively. If the vector $\vec{\omega}$ is defined as $\vec{\omega}=\vec{\nabla} \times \overrightarrow{\mathrm{u}},$ then $|(\vec{\omega} \cdot \vec{\nabla}) \overrightarrow{\mathrm{u}}|=$_____________
The vector $\overrightarrow{\mathrm{u}}$ is defined as $\overrightarrow{\mathrm{u}}=\mathrm{ye}_{\mathrm{x}}-\mathrm{xe}_{\mathrm{y}},$ where $\hat{\mathrm{e}}_{\mathrm{x}}$ and $\hat{\mathrm{e}}_{\mathrm{y}}$ are the unit vectors along $\mathrm{x}$ and $\mathrm{y}$ directions, respectively. If the vector $\vec{\omega}$ is defined as $\vec{\omega}=\vec{\nabla} \times \overrightarrow{\mathrm{u}},$ then $|(\vec{\omega} \cdot \vec{\nabla}) \overrightarrow{\mathrm{u}}|=$_____________