A thin long circular pipe of $10 \mathrm{~mm}$ diameter has porous walls and spins at 60 rpm about its own axis. Fluid is pumped out of the pipe such that it emerges radially relative to the pipe surface at a velocity of $1 \mathrm{~m} / \mathrm{s}$. [Neglect the effect of gravity.]

What is the radial component of the fluid's velocity at a radial location $0.5 \mathrm{~m}$ from the pipe axis?

(A) $0.01 \mathrm{~m} / \mathrm{s}$

(B) $0.1 \mathrm{~m} / \mathrm{s}$

(C) $1 \mathrm{~m} / \mathrm{s}$

(D) $10 \mathrm{~m} / \mathrm{s}$

A thin long circular pipe of $10 \mathrm{~mm}$ diameter has porous walls and spins at 60 rpm about its own axis. Fluid is pumped out of the pipe such that it emerges radially relative to the pipe surface at a velocity of $1 \mathrm{~m} / \mathrm{s}$. [Neglect the effect of gravity.]

What is the radial component of the fluid's velocity at a radial location $0.5 \mathrm{~m}$ from the pipe axis?

(A) $0.01 \mathrm{~m} / \mathrm{s}$

(B) $0.1 \mathrm{~m} / \mathrm{s}$

(C) $1 \mathrm{~m} / \mathrm{s}$

(D) $10 \mathrm{~m} / \mathrm{s}$

1 Answer

127 votes

127