A $3 \mathrm{~m}$ long simply supported beam of uniform cross section is subjected to a uniformly distributed load of $\mathrm{w}=20 \mathrm{kN} / \mathrm{m}$ in the central $1 \mathrm{~m}$ as shown in the figure.
If the flexural rigidity (EI) of the beam is $30 \times 10^{6} \mathrm{~N}-\mathrm{m}^{2}$, the maximum slope (expressed in radians) of the deformed beam is
(A) $0.681 \times 10^{-7}$
(B) $0.943 \times 10^{-7}$
(C) $4.310 \times 10^{-7}$
(D) $5.910 \times 10^{-7}$
A $3 \mathrm{~m}$ long simply supported beam of uniform cross section is subjected to a uniformly distributed load of $\mathrm{w}=20 \mathrm{kN} / \mathrm{m}$ in the central $1 \mathrm{~m}$ as shown in the figure.
If the flexural rigidity (EI) of the beam is $30 \times 10^{6} \mathrm{~N}-\mathrm{m}^{2}$, the maximum slope (expressed in radians) of the deformed beam is
(A) $0.681 \times 10^{-7}$
(B) $0.943 \times 10^{-7}$
(C) $4.310 \times 10^{-7}$
(D) $5.910 \times 10^{-7}$
$0.681 \times 10^{-7}$, $0.943 \times 10^{-7}$, $4.310 \times 10^{-7}$,$5.910 \times 10^{-7}$