A rough pipe of $0.5 \mathrm{~m}$ diameter, $300 \mathrm{~m}$ length and roughness height of $0.25 \mathrm{~mm},$ carries water (kinematic viscosity $=0.9 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ ) with velocity of $3 \mathrm{~m} / \mathrm{s}$. Friction factor $(f)$ for laminar flow is given by $f=64 / R_{e},$ and for turbulent flow it is given by $\frac{1}{\sqrt{f}}=2 \log _{10}\left(\frac{r}{k}\right)+1.74,$ where, $R_{e}=$ Reynolds number, $r=$ radius of pipe, $k=$ roughness height and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. The head loss (in $\mathrm{m}$, up to three decimal places) in the pipe due to friction is
A rough pipe of $0.5 \mathrm{~m}$ diameter, $300 \mathrm{~m}$ length and roughness height of $0.25 \mathrm{~mm},$ carries water (kinematic viscosity $=0.9 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ ) with velocity of $3 \mathrm{~m} / \mathrm{s}$. Friction factor $(f)$ for laminar flow is given by $f=64 / R_{e},$ and for turbulent flow it is given by $\frac{1}{\sqrt{f}}=2 \log _{10}\left(\frac{r}{k}\right)+1.74,$ where, $R_{e}=$ Reynolds number, $r=$ radius of pipe, $k=$ roughness height and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. The head loss (in $\mathrm{m}$, up to three decimal places) in the pipe due to friction is