Raw municipal solid waste (MSW) collected from a city contains $70 \%$ decomposable material that can be converted to methane. The water content of the decomposable material is $35 \%$. An elemental analysis of the decomposable material yields the following mass percent. $\mathrm{C}: \mathrm{H}: \mathrm{O}: \mathrm{N}: \text { other }=44: 6: 43: 0.8: 6.2$ The methane production of the decomposable material is governed by the following stoichiometric relation $
\mathrm{C}_{a} \mathrm{H}_{b} \mathrm{O}_{c} \mathrm{~N}_{d}+n \mathrm{H}_{2} \mathrm{O} \rightarrow m \mathrm{CH}_{4}+s \mathrm{CO}_{2}+d \mathrm{NH}_{3} $ Given atomic weights: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16, \mathrm{~N}=14 .$ The mass of methane produced (in grams, round off to 1 decimal place ) per $\mathrm{kg}$ of raw MSW will be
Raw municipal solid waste (MSW) collected from a city contains $70 \%$ decomposable material that can be converted to methane. The water content of the decomposable material is $35 \%$. An elemental analysis of the decomposable material yields the following mass percent. $\mathrm{C}: \mathrm{H}: \mathrm{O}: \mathrm{N}: \text { other }=44: 6: 43: 0.8: 6.2$ The methane production of the decomposable material is governed by the following stoichiometric relation $
\mathrm{C}_{a} \mathrm{H}_{b} \mathrm{O}_{c} \mathrm{~N}_{d}+n \mathrm{H}_{2} \mathrm{O} \rightarrow m \mathrm{CH}_{4}+s \mathrm{CO}_{2}+d \mathrm{NH}_{3} $ Given atomic weights: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16, \mathrm{~N}=14 .$ The mass of methane produced (in grams, round off to 1 decimal place ) per $\mathrm{kg}$ of raw MSW will be