One thousand units of mixed fruit bar, each weighing $100 \mathrm{~g}$ with a surface area of $0.01 \mathrm{~m}^{2},$ are frozen from $70^{\circ} \mathrm{C}$ molten mass condition to $-20{ }^{\circ} \mathrm{C}$ frozen storage condition within 3 hours. The specific heat capacity values of the bar are $3.6 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ and $1.97 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ before and after freezing point $\left(0^{\circ} \mathrm{C}\right)$ respectively. If the latent heat of crystallization is $250 \mathrm{~kJ} \mathrm{~kg}^{-1},$ the cooling capacity of the refrigeration unit required in tons of refrigeration is
(A) 0.77
(B) 1.43
(C) 1.66
(D) 4.32
One thousand units of mixed fruit bar, each weighing $100 \mathrm{~g}$ with a surface area of $0.01 \mathrm{~m}^{2},$ are frozen from $70^{\circ} \mathrm{C}$ molten mass condition to $-20{ }^{\circ} \mathrm{C}$ frozen storage condition within 3 hours. The specific heat capacity values of the bar are $3.6 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ and $1.97 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ before and after freezing point $\left(0^{\circ} \mathrm{C}\right)$ respectively. If the latent heat of crystallization is $250 \mathrm{~kJ} \mathrm{~kg}^{-1},$ the cooling capacity of the refrigeration unit required in tons of refrigeration is
(A) 0.77
(B) 1.43
(C) 1.66
(D) 4.32