A waste to energy plant burns dry solid waste of composition: Carbon $=35 \%$, Oxygen $=26 \%$, Hydrogen $=10 \%,$ Sulphur $=6 \%,$ Nitrogen $=3 \%$ and Inerts $=20 \%$. Burning rate is 1000 tonnes/d. Oxygen in air by weight is $23 \%$. Assume complete conversion of Carbon to $\mathrm{CO}_{2}$, Hydrogen to $\mathrm{H}_{2} \mathrm{O},$ Sulphur to $\mathrm{SO}_{2}$ and Nitrogen to $\mathrm{NO}_{2}$ Given Atomic weights: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32$ The stoichiometric (theoretical) amount of air (in tonnes/d, round off to the nearest integer) required for complete burning of this waste, is
A waste to energy plant burns dry solid waste of composition: Carbon $=35 \%$, Oxygen $=26 \%$, Hydrogen $=10 \%,$ Sulphur $=6 \%,$ Nitrogen $=3 \%$ and Inerts $=20 \%$. Burning rate is 1000 tonnes/d. Oxygen in air by weight is $23 \%$. Assume complete conversion of Carbon to $\mathrm{CO}_{2}$, Hydrogen to $\mathrm{H}_{2} \mathrm{O},$ Sulphur to $\mathrm{SO}_{2}$ and Nitrogen to $\mathrm{NO}_{2}$ Given Atomic weights: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32$ The stoichiometric (theoretical) amount of air (in tonnes/d, round off to the nearest integer) required for complete burning of this waste, is