WELCOME TO SaraNextGen.Com

Exercise 6.1 - Chapter 6 - Two Dimensional Analytical Geometry - 11th Maths Guide Samacheer Kalvi Solutions

Updated On 26-08-2025 By Lithanya


You can Download the Exercise 6.1 - Chapter 6 - Two Dimensional Analytical Geometry - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends

Two Dimensional Analytical Geometry
Ex 6.1
Question 1.

Find the locus of $\mathrm{P}$, if for all values of a, the co-ordinates of a moving point $\mathrm{P}$ is
(i) $(9 \cos \alpha, 9 \sin \alpha)$
(ii) $(9 \cos \alpha, 6 \sin \alpha)$
Solution:
(i) Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be the moving point.
We are given $\mathrm{h}=9 \cos \alpha$ and $\mathrm{k}=9 \sin \alpha$ and
$\Rightarrow \cos \alpha=\frac{h}{9}$ and $\sin \alpha=\frac{k}{9}$
We know $\cos ^2 \alpha+\sin ^2 \alpha=1 \Rightarrow\left(\frac{h}{9}\right)^2+\left(\frac{k}{9}\right)^2=1$
(i.e.) $\frac{h^2}{81}+\frac{k^2}{81}=1 \Rightarrow h^2+k^2=81$
$\therefore$ locus of the point is $x^2+y^2=81$
(ii) Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a moving point.
We are given $\mathrm{h}=9 \cos \alpha$ and $\mathrm{k}=6 \sin \alpha$
$
\begin{gathered}
\Rightarrow \cos \alpha=\frac{h}{9} \text { and } \sin \alpha=\frac{k}{6} \\
\cos ^2 \alpha+\sin ^2 \alpha=1 \Rightarrow\left(\frac{h}{9}\right)^2+\left(\frac{k}{6}\right)^2=1 \\
\therefore \frac{h^2}{81}+\frac{k^2}{36}=1
\end{gathered}
$
Locus of the point is $\frac{x^2}{81}+\frac{y^2}{36}=1$
Question 2.
Find the locus of a point $P$ that moves at a constant distant of
(i) Two units from the $x$-axis
(ii) Three units from the $y$-axis.
Solution:
(i) Let the point $(\mathrm{x}, \mathrm{y})$ be the moving point. Equation of a line at a distance of 2 units from $\mathrm{x}$-axis is $\mathrm{k}=2$ So the locus is $\mathrm{y}=2$

$
\begin{aligned}
& \text { (i.e.) } y-2=0 \\
& 435
\end{aligned}
$
(ii) Equation of a line at a distance of 3 units from $y$-axis is $\mathrm{h}=3$
So the locus is $x=3$ (i.e.) $x-3=0$
Question 3.
If $\theta$ is a parameter, find the equation of the locus of a moving point, whose coordinates are $\mathrm{x}-\mathrm{a} \cos ^3 \theta, \mathrm{y}$ $=\mathrm{a} \sin ^3 \theta$
Solution:
$
x=a \cos ^3 \theta \Rightarrow \cos ^3 \theta=\frac{x}{a} \Rightarrow \cos \theta=\left(\frac{x}{a}\right)^{1 / 3}
$
$
\begin{aligned}
& y=a \sin ^3 \theta \Rightarrow \sin ^3 \theta=\frac{y}{a} \\
& \Rightarrow \sin \theta=\left(\frac{y}{a}\right)^{1 / 3}
\end{aligned}
$
But $\cos ^2 \theta+\sin ^2 \theta=1 \Rightarrow\left\{\left(\frac{x}{a}\right)^{1 / 3}\right\}^2+\left\{\left(\frac{y}{a}\right)^{1 / 3}\right\}^2=1$
(i.e) $\frac{x^{2 / 3}}{a^{2 / 3}}+\frac{y^{2 / 3}}{a^{2 / 3}}=1 \Rightarrow x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
Question 4.
Find the value of $k$ and $b$, if the points $P(-3,1)$ and $Q(2, b)$ lie on the locus of $x^2-5 x+k y=0$.
Solution:
Given $P(-3,1)$ lie on $x^2-5 x+k y=0$
$
\begin{aligned}
& \Rightarrow(-3)^2-5(-3)+\mathrm{k}(1)=0 \\
& 9+15+\mathrm{k}=0 \Rightarrow \mathrm{k}=-24
\end{aligned}
$
$\mathrm{Q}(2, \mathrm{~b})$ lie on $\mathrm{x}^2-5 \mathrm{x}+\mathrm{ky}=0$
$(2)^2-5(2)+\mathrm{k}(\mathrm{b})=0 \Rightarrow 4-5(2)-24 \mathrm{~b}=0$
$4-10-24 b=0 \Rightarrow-24 b=6 \Rightarrow b=6 /-24=-1 / 4$
Question 5.
A straight rod of length 8 units slides with its ends $\mathrm{A}$ and $\mathrm{B}$ always on the $\mathrm{x}$ and $\mathrm{y}$-axis respectively. Find the locus of the mid point of the line segment $\mathrm{AB}$.
Solution:

Let $P(h, k)$ be the moving point $A(a, 0)$ and $B(0, b) P$ is the mid point of $A B$
$
\Rightarrow \mathrm{P}=\left(\frac{a}{2}, \frac{b}{2}\right)
$


Given $\frac{a}{2}=h$ and $\frac{b}{2}=k \Rightarrow a=2 h$ and $b=2 k$
$\mathrm{OAB}$ is a right angled triangle $\Rightarrow \mathrm{OA}^2+\mathrm{OB}^2=\mathrm{AB}^2$
(i.e.) $a^2+b^2=8^2 \quad[\because \mathrm{AB}=8]$
$\Rightarrow(2 h)^2+(2 k)^2=8^2$ (i.e) $4 h^2+4 k^2=64$
$(\div$ by 4$) h^2+k^2=16$
So the locus of $P$ is $x^2+y^2=16$

Question 6.
Find the equation of the locus of a point such that the sum of the squares of the distance from the points $(3,5),(1,-1)$ is equal to 20 .
Solution:
Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be the moving point
Let the given point be $A(3,5)$ and $B(1,-1)$
We are given $\mathrm{PA}^2+\mathrm{PB}^2=20$
$
\begin{aligned}
& \Rightarrow(\mathrm{h}-3)^2+(\mathrm{k}-5)^2+(\mathrm{h}-1)^2+(\mathrm{k}+1)^2=20 \\
& \Rightarrow \mathrm{h}^2-6 \mathrm{~h}+9+\mathrm{k}^2-10 \mathrm{k}+25+\mathrm{h}^2-2 \mathrm{~h}+1+\mathrm{k}^2+2 \mathrm{k}+1=20 \\
& \text { (i.e.) } 2 \mathrm{~h}^2+2 \mathrm{k}^2-8 \mathrm{~h}-8 \mathrm{k}+36-20=0 \\
& 2 \mathrm{~h}^2+2 \mathrm{k}^2-8 \mathrm{~h}-8 \mathrm{k}+16=0 \\
& (\div \mathrm{by} 2) \mathrm{h}^2+\mathrm{k}^2-4 \mathrm{~h}-4 \mathrm{k}+8=0
\end{aligned}
$
So the locus of $P$ is $x^2+y^2-4 x-4 y+8=0$
Question 7.
Find the equation of the locus of the point $P$ such that the line segment $A B$, joining the points $A(1,-6)$ and $B(4,-2)$, subtends a right angle at $P$.
Solution:
Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be the moving point

Given $A(1,-6)$ and $B(4,-2)$,
Since $\triangle \mathrm{APB}=90^{\circ}, \mathrm{PA}^2+\mathrm{PB}^2=\mathrm{AB}^2$
(i.e.) $(\mathrm{h}-1)^2+(\mathrm{k}+6)^2+(\mathrm{h}-4)^2+(\mathrm{k}+2)^2=(4-1)^2+(-2+6)^2$
(i.e) $\mathrm{h}^2+1-2 \mathrm{~h}+\mathrm{k}^2+36+12 \mathrm{k}+\mathrm{h}^2+16-8 \mathrm{~h}+\mathrm{k}^2+4+4 \mathrm{k}=3^2+4^2=25$
$2 \mathrm{~h}^2+2 \mathrm{k}^2-10 \mathrm{~h}+16 \mathrm{k}+57-25=0$
$2 \mathrm{~h}^2+2 \mathrm{k}^2-10 \mathrm{~h}+16 \mathrm{k}+32=0$
$(\div \mathrm{by} 2) \mathrm{h}^2+\mathrm{k}^2-5 \mathrm{~h}+8 \mathrm{k}+16=0$
So the locus of $P$ is $x^2+y^2-5 x+8 y+16=0$
Question 8.
If $O$ is origin and $R$ is a variable point on $y^2=4 x$, then find the equation of the locus of the mid-point of the line segment OR.
Solution:
Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be the moving point
We are given $O(0,0)$. Let $R=(a, b)$
Mid point of $\mathrm{OR}=\left(\frac{a}{2}, \frac{b}{2}\right) \Rightarrow\left(\frac{a}{2}, \frac{b}{2}\right)=(h, k)$ $\Rightarrow a=2 h, b=2 k$
Substituting a, b values is $y^2=4 x$
we get $(2 \mathrm{k})^2=4(2 \mathrm{~h})$
(i.e) $4 \mathrm{k}^2=8 \mathrm{~h}$
$(\div$ by 4$) \mathrm{k}^2=2 \mathrm{~h}$
So the locus of $P$ is $y^2=2 x$
Question 9.
The coordinates of a moving point $\mathrm{P}$ are $\left(\frac{a}{2}(\operatorname{cosec} \theta+\sin \theta), \frac{b}{2}(\operatorname{cosec} \theta-\sin \theta)\right)$ where I is a variable parameter. Show that the equation of the locus $\mathbf{P}$ is $b^2 x^2-a^2 y^2=a^2 b^2$.

Solution:
Let $\mathrm{P}(h, k)$ be the moving point
We are given $\mathrm{P}=\left[\frac{a}{2}(\operatorname{cosec} \theta+\sin \theta), \frac{b}{2}(\operatorname{cosec} \theta-\sin \theta)\right]$
$
\begin{aligned}
& \Rightarrow h=\frac{a}{2}(\operatorname{cosec} \theta+\sin \theta)(\text { i.e. }) a[\operatorname{cosec} \theta+\sin \theta] \\
& \Rightarrow \operatorname{cosec} \theta+\sin \theta=\frac{2 h}{a} \\
& \frac{b}{2}(\operatorname{cosec} \theta-\sin \theta)=k \Rightarrow \operatorname{cosec} \theta-\sin \theta=\frac{2 k}{b}
\end{aligned}
$
(1) $+(2) \Rightarrow 2 \operatorname{cosec} \theta=\frac{2 h}{a}+\frac{2 k}{b}$
$(\div$ by 2$) \Rightarrow \operatorname{cosec} \theta=\frac{h}{a}+\frac{k}{b}$
(1) $-(2) \Rightarrow 2 \sin \theta=\frac{2 h}{a}-\frac{2 k}{b}(\div b y 2) \Rightarrow \sin \theta=\frac{h}{a}-\frac{k}{b}$.
But $\operatorname{cosec} \theta \sin \theta=1$, So from (3) $\&(4) \Rightarrow\left(\frac{h}{a}+\frac{k}{b}\right)\left(\frac{h}{a}-\frac{k}{b}\right)=1$ $\Rightarrow \frac{h^2}{a^2}-\frac{k^2}{b^2}=1$
So the locus of $(h, k)$ is $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$
(i.e) $\frac{b^2 x^2-a^2 y^2}{a^2 b^2}=1 \Rightarrow b^2 x^2-a^2 y^2=a^2 b^2$

Question 10.
If $P(2,-7)$ is a given point and $Q$ is a point on $2 x^2+9 y^2=18$, then find the equations of the locus of the mid-point of $P Q$.
Solution:
$\mathrm{P}=(2,-7)$; Let $(\mathrm{h}, \mathrm{k})$ be the moving point $\mathrm{Q}=(\mathrm{a}, \mathrm{b})$
Mid point of $P Q=\left(\frac{2+a}{2}, \frac{-7+b}{2}\right)=(h, k)$ say
$
\begin{aligned}
& \frac{a+2}{2}=h, \quad \frac{b-7}{2}=k \\
& \Rightarrow \mathrm{a}=2 \mathrm{~h}-2, \\
& \mathrm{~b}=2 \mathrm{k}+1
\end{aligned}
$
$Q$ is a point on $2 x^2+9 y^2=18$ (i.e) $(a, b)$ is on $2 x^2+9 y^2=18$
$\Rightarrow 2(2 \mathrm{~h}-2)^2+9(2 \mathrm{k}+7)^2=18$
(i.e) $2\left[4 \mathrm{~h}^2+4-8 \mathrm{~h}\right]+9\left[4 \mathrm{k}^2+49+28 \mathrm{k}\right]-18=0$
(i.e) $8 \mathrm{~h}^2+8-16 \mathrm{~h}+36 \mathrm{k}^2+441+252 \mathrm{k}-18=0$
$
8 \mathrm{~h}^2+36 \mathrm{k}^2-16 \mathrm{~h}+252 \mathrm{k}+431=0
$
The locus is $8 x^2+36 y^2-16 x+252 y+431=0$

Question 11.
If $R$ is any point on the $x$-axis and $Q$ is any point on the $y$-axis and Pis a variable point on $R Q$ with $R P=$ $b, P Q=a$. then find the equation of locus of $P$.
Solution:
$P=(x, 0), Q=(0, y), R(h, k)$ be a point on $R Q$ such that $P R: R Q=b: a$
$
\begin{aligned}
& \therefore \mathrm{P}=\left(\frac{a x}{a+b}, \frac{b y}{a+b}\right) \Rightarrow\left(\frac{a x}{a+b}, \frac{b y}{a+b}\right)=(h, k) \\
& \Rightarrow a x=(a+b) h \Rightarrow x=\frac{a+b}{a} h \\
& b y=(a+b) k \Rightarrow y=\frac{a+b}{b} k
\end{aligned}
$
From the right angled triangle $\mathrm{OQR}, \mathrm{OR}^2+\mathrm{OQ}^2=\mathrm{QR}^2$

$
\begin{aligned}
& \text { (i.e) } \mathrm{X}^2+\mathrm{Y}^2=(a+b)^2 \\
& \Rightarrow\left[\frac{a+b}{a} h\right]^2+\left[\frac{a+b}{b} k\right]^2=(a+b)^2 \\
& \Rightarrow \frac{(a+b)^2}{a^2} h^2+\frac{(a+b)^2}{b^2} k^2=(a+b)^2 \\
& \div b y(a+b)^2, \frac{h^2}{a^2}+\frac{k^2}{b^2}=1 \\
& \text { Locus is } \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
\end{aligned}
$
Question 12.
If the points $P(6,2)$ and $Q(-2,1)$ and $R$ are the vertices of a $\triangle P Q R$ and $R$ is the point on the locus $y=x^2$ $-3 x+4$, then find the equation of the locus of centroid of $\triangle P Q R$.

Solution:
$P(6,2), Q(-2,1)$. Let $R=(a, b)$ be a point on $y=x^2-3 x+4$.
Centroid of $\triangle \mathrm{PQR}$ is $\left(\frac{6-2+a}{3}, \frac{2+1+b}{3}\right)$
$
\begin{aligned}
& \text { (i.e) }\left(\frac{4+a}{3}, \frac{3+b}{3}\right)=(h, k) \\
& \frac{4+a}{3}=h \Rightarrow a=3 h-4 \\
& \frac{3+b}{3}=k \Rightarrow b=3 k-3
\end{aligned}
$
But (a, b) is a point on $y=x^2-3 x+4$
$
\mathrm{b}=\mathrm{a}^2-3 \mathrm{a}+4
$
(i.e) $3 \mathrm{k}-3=(3 \mathrm{~h}-4)^2-3(3 \mathrm{~h}-4)+4$
(i.e) $3 \mathrm{k}-3=9 \mathrm{~h}^2+16-24 \mathrm{~h}-9 \mathrm{~h}+12+4$
$
\Rightarrow 9 \mathrm{~h}^2-24 \mathrm{~h}-9 \mathrm{~h}+32-3 \mathrm{k}+3=0
$
(i.e) $9 \mathrm{~h}^2-33 \mathrm{~h}-3 \mathrm{k}+35=0$,
Locus of $(h, k)$ is $9 x^2-33 x-3 y+35=0$
Question 13.
If $Q$ is a point on the locus of $x^2+y^2+4 x-3 y+7=0$ then find the equation of locus of $P$ which divides segment $O Q$ externally in the ratio $3: 4$, where $O$ is origin.
Solution:
Let $(\mathrm{h}, \mathrm{k})$ be the moving point $\mathrm{O}=(0,0)$;
Let $P Q=(a, b)$ on $x^2+y^2+4 x-3 y+7=0$
$\mathrm{P}$ divides $\mathrm{OQ}$ externally in the ratio $3: 4 \Rightarrow \mathrm{P}=\left(\frac{3(a)-0}{-1}, \frac{3(b)-0}{-1}\right)=(-3 a,-3 b)=(h, k)$ $a=-\frac{h}{3}$ and $b=-\frac{k}{3}$
But $(a, b)$ is on $x^2+y^2+4 x-3 y+7=0$
$
\Rightarrow\left(-\frac{h}{3}\right)^2+\left(-\frac{k}{3}\right)^2+4\left(-\frac{h}{3}\right)-3\left(-\frac{k}{3}\right)+7=0
$
(i.e) $\frac{h^2}{9}+\frac{k^2}{9}-\frac{4 h}{3}+k+7=0$
$h^2+k^2-12 h+9 k+63=0$, Locus of $(h, k)$ is $x^2+y^2-12 x+9 y+63=0$

Question 14.
Find the points on the locus of points that are 3 units from $\mathrm{x}$ - axis and 5 units from the point $(5,1)$.

Solution:
A line parallel to $x$-axis is of the form $\mathrm{y}=\mathrm{k}$. Here $\mathrm{k}=3 \Rightarrow \mathrm{y}=3$
A point on this line is taken as $P(a, 3)$. The distance of $P(a, 3)$ from $(5,1)$ is given as 5 units
$
\begin{aligned}
& \Rightarrow(a-5)^2+(3-1)^2=5^2 \\
& a^2+25-10 a+9+1-6=25 \\
& a^2-10 a+25+4-25=0 \\
& a^2-10 a+4=0 \\
& \quad a=\frac{10 \pm \sqrt{100-4(1)(4)}}{2(1)}=\frac{10 \pm \sqrt{84}}{2}=\frac{10 \pm 2 \sqrt{21}}{2}=5 \pm \sqrt{21}
\end{aligned}
$
So the points are $(5+\sqrt{21}, 3),(5-\sqrt{21}, 3)$.
Question 15
The sum of the distance of a moving point from the points $(4,0)$ and $(-4,0)$ is always 10 units. Find the equation of the locus of the moving point.
Solution:
Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a moving point
Here $A=(4,0)$ and $\mathrm{B}=(-4,0)$
Given $\mathrm{PA}+\mathrm{PB}=10$

$
\begin{aligned}
& \Rightarrow \sqrt{(h-4)^2+k^2}+\sqrt{(h+4)^2+k^2}=10 \\
& \Rightarrow \sqrt{(h-4)^2+k^2}=10-\sqrt{(h+4)^2+k^2}
\end{aligned}
$
Squaring on both sides $(h-4)^2+k^2=100+(h+4)^2+k^2-20 \sqrt{(h+4)^2+k^2}$
(i.e.) $h^2+16-8 h+k^2=100+h^2+16+8 h+k^2-20 \sqrt{(h+4)^2+k^2}$
$
\begin{aligned}
& \Rightarrow-16 h-100=-20 \sqrt{(h+4)^2+k^2} \\
& (\div \text { by }-4) 4 h+25=5 \sqrt{(h+4)^2+k^2}
\end{aligned}
$
Again Squaring on both sides we get,
$
\begin{aligned}
& (4 h+25)^2=25\left[(h+4)^2+k^2\right] \\
& \text { (i.e) } 16 h^2+625+200 h=25\left[h^2+8 h+16+k^2\right] \\
& \Rightarrow 16 h^2+625+200 h-25 h^2-200 h-400-25 k^2=0 \\
& -9 h^2-25 k^2+225=0 \\
& \Rightarrow 9 h^2+25 k^2=225 \\
& \frac{9 h^2}{225}+\frac{25 k^2}{225}=1 \\
& \text { (i.e) } h^2 / 25+k^2 / 9=1
\end{aligned}
$
So the locus is $\frac{x^2}{25}+\frac{y^2}{9}=1$