Exercise 9.1 - Chapter 9 - Limits and Continuity - 11th Maths Guide Samacheer Kalvi Solutions
Updated On 26-08-2025 By Lithanya
You can Download the Exercise 9.1 - Chapter 9 - Limits and Continuity - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Limits and Continuity
Ex 9.1
In problems 1-6, complete the table using calculate and use the result to estimate the limit. Question 1.
$
\lim _{x \rightarrow 2} \frac{x-2}{x^2-x-2}
$
Solution:
Question 2.
$
\lim _{x \rightarrow 2} \frac{x-2}{x^2-4}
$
Solution:
Question 3.
$
\lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}
$
Solution:
Question 4.
$
\lim _{x \rightarrow 3} \frac{\sqrt{1-x}-2}{x+3}
$
Solution:
Question 5.
$
\lim _{x \rightarrow 0} \frac{\sin x}{x}
$
Solution:
Question 6.
$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x}
$
Solution:
In exercise problems 7-15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
Question 7.
$
\lim _{x \rightarrow 3}(4-\mathrm{x})
$
Solution:
$
\begin{aligned}
& \lim _{x \rightarrow 3}(4-x)=1 \\
& \lim _{x \rightarrow 3^{-}}(4-x)=1 \\
& \lim _{x \rightarrow 3^{+}}(4-x)=1 \\
& \lim _{x \rightarrow 3^{-}}(4-x)=\lim _{x \rightarrow 3^{+}}(4-x)=\lim _{x \rightarrow 3}(4-x)
\end{aligned}
$
Limit exist and is equal to 1
Question 8.
$
\lim _{x \rightarrow 1}\left(\mathrm{x}^2+2\right)
$
Solution:
$
\begin{aligned}
& \lim _{x \rightarrow 1}\left(x^2+2\right)=3 \\
& \lim _{x \rightarrow 1^{-}}\left(x^2+2\right)=3 \\
& \lim _{x \rightarrow 1^{+}}\left(x^2+2\right)=3 \\
& \lim _{x \rightarrow 1}\left(x^2+2\right)=\lim _{x \rightarrow 1^{-}}\left(x^2+2\right)=\lim _{x \rightarrow 1^{+}}\left(x^2+2\right)
\end{aligned}
$
Limit exist and is equal to $=3$
Question 9.
$\lim _{x \rightarrow 2} f(x)$ where $f(x)=\left\{\begin{array}{cc}4-x, & x \neq 2 \\ 0, & x=2\end{array}\right.$
Solution:
$
\begin{gathered}
\lim _{x \rightarrow 2} f(x) \\
\lim _{x \rightarrow 2^{-}}(4-x)=2 \\
\lim _{x \rightarrow 2^{+}}(4-x)=2 \\
\lim _{x \rightarrow 2^{-}}(4-x)=\lim _{x \rightarrow 2^{+}}(4-x)
\end{gathered}
$
Limit does exist $=2$
Question 10.
$\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{cc}x^2+2, & x \neq 1 \\ 1, & x=1\end{array}\right.$
Solution:
$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)=1 \\
& \lim _{x \rightarrow 1^{-}}\left(x^2+2\right)=3 \\
& \lim _{x \rightarrow 1^{+}}\left(x^2+2\right)=3 \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \\
& \Rightarrow \text { limt exist }=3
\end{aligned}
$
Question 11.
$
\lim _{x \rightarrow 3} \frac{1}{x-3}
$
Solution:
$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} \frac{1}{x-3}=-\infty \\
& \lim _{x \rightarrow 3^{+}} \frac{1}{x-3}=\infty \\
& \lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x)
\end{aligned}
$
Limit does not exist
Question 12 .
$
\lim _{x \rightarrow 5} \frac{-|x-5|}{(x-5)}
$
Solution:
$
\begin{aligned}
& \text { When } \mathrm{x} \rightarrow 5,(\mathrm{x}-5)=-(\mathrm{x}-5) \\
& \therefore \lim _{x \rightarrow 5^{-}} \frac{-(x-5)}{(x-5)}=-1 \\
& \text { When } \mathrm{x} \rightarrow 5^{+},(\mathrm{x}-5)=(\mathrm{x}-5)
\end{aligned}
$
$
\begin{array}{rlrl}
& \lim _{x \rightarrow 5^{+}} \frac{(x-5)}{(x-5)}=1 \\
\therefore \quad & \lim _{x \rightarrow 5^{-}} f(x) & \neq \lim _{x \rightarrow 5^{+}} f(x)
\end{array}
$
Limit does not exist
Question 13.
$\lim _{x \rightarrow 1} \sin (\pi x)$
Solution:
$
\begin{aligned}
& \lim _{x \rightarrow 1} \sin (\pi x) \\
& \lim _{x \rightarrow 1^{-}} \sin (\pi x)=0 \\
& \lim _{x \rightarrow 1^{+}} \sin (\pi x)=0 \\
& \lim _{x \rightarrow 1} \sin (\pi x)=0 \\
& \lim _{x \rightarrow 1^{-}} \sin \pi x=\lim _{x \rightarrow 1^{+}} \sin \pi x=\lim _{x \rightarrow 1} \sin \pi x \\
& \text { So limit exists }=0
\end{aligned}
$
Question 14.
$
\lim _{x \rightarrow 0}(\sec x)
$
Solution:
$
\begin{aligned}
& \lim _{x \rightarrow 0}(\sec x) \\
& \lim _{x \rightarrow 0^{-}}(\sec x)=1 \\
& \lim _{x \rightarrow 0^{+}} \sec x=1 \\
& \lim _{x \rightarrow 0} \sec x=1 \\
& \lim _{x \rightarrow 0^{-}} \sec x=\lim _{x \rightarrow 0^{+}} \sec x=\lim _{x \rightarrow 0} \sec x \\
& \text { limits exists } \\
& =1 \\
&
\end{aligned}
$
Question 15.
$\lim _{x \rightarrow \frac{\pi}{2}} \tan x$
Solution:
$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}} \tan x \\
& \lim _{x \rightarrow \frac{\pi^{-}}{2}} \tan x=-1 \\
& \lim _{x \rightarrow \frac{\pi^{+}}{2}} \tan x=1 \\
& \lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan x \neq \lim _{x \rightarrow \frac{\pi^{+}}{2}} \tan x \\
&
\end{aligned}
$
Limit does not exist
Sketch the graph of $\mathrm{f}$, then identify the values of $\mathrm{x}_0$ for which $\lim _{x \rightarrow x_0} \mathrm{f}(\mathrm{x})$ exists.
Question 16.
$
f(x)= \begin{cases}x^2, & x \leq 2 \\ 8-2 x, & 2 $
Solution:
$
\begin{aligned}
\lim _{x \rightarrow 4^{-}}(8-2 x) & =0 \\
\lim _{x \rightarrow 4^{+}}(4) & =4 \\
\therefore \quad \lim _{x \rightarrow x_4} f(x) \text { does not exist at } x & =4 \\
\text { (i.e.) limit exists excepts at } x_0 & =4
\end{aligned}
$
Question 17.
$
f(x)= \begin{cases}\sin x, & x<0 \\ 1-\cos x, & 0 \leq x \leq \pi \\ \cos x, & x>\pi\end{cases}
$
Solution:
$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \sin x & =0, \quad \lim _{x \rightarrow 0^{+}} 1-\cos x=0 \\
\lim _{x \rightarrow \pi^{-}}(1-\cos x) & =\lim _{x \rightarrow \pi^{+}} \cos x=-1
\end{aligned}
$
Limit exists except at $x_0=\pi$
Question 18.
Sketch the graph of a function $f$ that satisfies the given values:
(i) $f(0)$ is undefined
(ii) $f(-2)=0$
$
\begin{array}{ll}
\lim _{x \rightarrow 0} f(x)=4 & f(2)=0 \\
f(2)=6 & \lim _{x \rightarrow 2} f(x) \\
\lim _{x \rightarrow 2} f(x)=3 & \lim _{x \rightarrow 2} f(x) \text { does not exist. }
\end{array}
$
Solution:
(i)
(ii)
Question 19.
Write a brief description of the meaning of the notation $\lim _{x \rightarrow 8} f(x)=25$
Solution:
$
\begin{aligned}
\lim _{x \rightarrow 8} f(x) & =25 \\
\lim _{x \rightarrow 8^{-}} f(x) & =25 \\
\lim _{x \rightarrow 8^{+}} f(x) & =25 \\
\lim _{x \rightarrow 8^{-}} f(x) & =\lim _{x \rightarrow 8^{+}} f(x) \\
f\left(8^{-}\right) & =f\left(8^{+}\right)=25 \text { (i.e.) } \lim _{x \rightarrow 8} f(x)=25
\end{aligned}
$
Question 20 .
If $f(2)=4$, can you conclude anything about the limit of $f(x)$ as $x$ approaches 2 ?
Solution:
No, $\mathrm{f}(\mathrm{x})=4$, It is the value of the function at $\mathrm{x}=2$
This limit doesn't exists at $\mathrm{x}=2$
Since $f(2)=4$
It need not imply that $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$
$\therefore$ we cannot conclude at $\mathrm{x}=2$
Question 21 .
If the limit of $f(x)$ as $z$ approaches 2 is 4 , can you conclude anything about $f(2)$ ?
Explain reasoning.
Solution:
$
\lim _{x \rightarrow 2^2} f(x) 4, \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=4
$
When $\mathrm{x}$ approaches 2 from the left or from the right $\mathrm{f}(\mathrm{x})$ approaches 4 .
Given that $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=4$
The existence or non existence at $x=2$ has no leaving on the existence of the limit of $f(x)$ as $x$ approaches to 2.
$\therefore$ We cannot conclude the value of $\mathrm{f}(2)$
Question 22 .
Evaluate: $\lim _{x \rightarrow 3} \frac{x^2-9}{x-3}$ if it exists by finding $f\left(3^{-}\right)$and $f\left(3^{+}\right)$.
Solution:
$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^2-9}{x-3} \\
& \lim _{x \rightarrow 3^{-}} \frac{x^2-9}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x+3)(x-3)}{(x-3)}=6 \\
& \lim _{x \rightarrow 3^{+}} \frac{x^2-9}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{(x+3)(x-3)}{(x-3)}=6 \\
& \lim _{x \rightarrow 3}\left(\frac{x^2-9}{x-3}\right)=6,6
\end{aligned}
$
Question 23.
Verify the existence of
$
\lim _{x \rightarrow 1} f(x), \text { where } f(x)=\left\{\begin{array}{r}
\frac{|x-1|}{x-1}, \text { for } x \neq 1 \\
0, \text { for } x=1
\end{array}\right.
$
Solution:
$
\lim _{x \rightarrow 1} f(x)
$
Where $\quad x \rightarrow 1^{-},|x-1|=-(x-1)$
$
\therefore \quad \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{-(x-1)}{x-1}=-1
$
$
\begin{aligned}
x \rightarrow 1^{+}-|x-1| & =(x-1) \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} \frac{(x-1)}{(x-1)}=1 \\
\lim _{x \rightarrow 1^{-}} f(x) & \neq \lim _{x \rightarrow 1^{+}} f(x)
\end{aligned}
$
Limit does not exist