Exercise 5.1-Additional Questions - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions
Updated On 26-08-2025 By Lithanya
You can Download the Exercise 5.1-Additional Questions - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Additional Questions Solved
Question 1.
Find the coefficient of the term involving $x^{32}$ and $x^{-17}$ in the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$
Solution:
Let $T_{\mathrm{r}+1}$ be the term in which $\mathrm{x}^{32}$ and $\mathrm{x}^{-17}$ occurs,
$
\begin{aligned}
\therefore T_{r+1} & ={ }^{15} \mathrm{C}_r \cdot\left(x^4\right)^{15-r}\left(-\frac{1}{x^3}\right)^r \\
& ={ }^{15} \mathrm{C}_r,(-1)^r, x^{60-4 r}, x^{-3 r}={ }^{15} \mathrm{C}_r,(-1)^r, x^{60-7 r}
\end{aligned}
$
(i) Since $x^{32}$ occurs in this term
$\therefore$ Exponent of $\mathrm{x}=32$
$\Rightarrow 60-7 \mathrm{r}=32 \Rightarrow 7 \mathrm{r}=28$
$r=28 \div 7=4$
$\therefore$ Coefficient of the term containing $\mathrm{x}^{32}={ }^{15} \mathrm{C}_4(-1)^4=1365$
(ii) Since $x^{-17}$ occurs in this term .
$\therefore$ Exponent of $\mathrm{x}=-17$
$\Rightarrow 60-7 \mathrm{r}=-17 \Rightarrow 7 \mathrm{r}=77, \therefore \mathrm{r}=11$
$\therefore$ Coefficient of the term containing $x^{-17}={ }^{15} \mathrm{C}_{11}(-1)^{11}=-{ }^{15} \mathrm{C}_{15-11}=-{ }^{15} \mathrm{C}_4=-1365$
Question 2.
Find a positive value of $m$ for which the coefficient of $x^2$ in the expansion of $(1+x)^{\mathrm{m}}$ is 6 .
Solution:
The general term in the expansion of $(1+x)^m$ is $T_{r+1}={ }^m \mathrm{C}_r(1)^{m-r} x^r$
On putting $r=2$, we get $T_3={ }^m \mathrm{C}_2(1)^{m-2} x^2={ }^m \mathrm{C}_2 x^2$
$\therefore$ Coefficient of $x^2={ }^m \mathrm{C}_2$
Also, coefficient of $x^2$ in the expansion of $(1+x)^{\mathrm{m}}$ is 6
$
\begin{aligned}
& \therefore{ }^m C_2=6 \Rightarrow \frac{m(m-1)}{2.1}=6 \Rightarrow m(m-1)=12 \\
& \Rightarrow m(m-1)=4.3 \Rightarrow \mathrm{m}=4
\end{aligned}
$
Question 3.
In the binomial expansion of $(1+a)^{\mathrm{m}+\mathrm{n}}$, prove that the coefficients of $\mathrm{a}^{\mathrm{m}}$ and $\mathrm{a}^{\mathrm{n}}$ are equal.
Solution:
In the expansion of $(1+a)^{m+n}$.
Coefficient of $a^m={ }^{m+n} C_m=\frac{(m+n) !}{m !(m+n-m) !}=\frac{(m+n) !}{m ! n !}$
Coefficient of $a^n={ }^{m+n} C_n=\frac{(m+n) !}{n !(m+n-n) !}=\frac{(m+n) !}{n ! m !}$
$(1)=(2) \Rightarrow$ Coefficient of $a^m=$ Coefficient of $a^n$.
Question 14.
The coefficient of $(\mathrm{r}-1)^{\text {th }}, \mathrm{r}^{\text {th }}$, and $(\mathrm{r}+1)^{\text {th }}$ terms in the expansion of $(\mathrm{x}+1)^{\mathrm{n}}$ are in the ratio $1: 3: 5$. Find both $n$ and $r$.
Solution:
We know that co-effcients of $(\mathrm{r}-1)^{\text {th }}, \mathrm{r}^{\text {th }}$ and $(\mathrm{r}+1)^{\text {th }}$ terms in the expansion of $(\mathrm{x}+1)^{\mathrm{n}}$ are ${ }^{\mathrm{n}} C_{\mathrm{r}-2}$ : ${ }^{\mathrm{n}} C_{\mathrm{r}}$ -1 and ${ }^n \mathrm{C}_{\mathrm{r}}$ respectively
Now, ${ }^n \mathrm{C}_{r-2}:{ }^n \mathrm{C}_{r-1}:{ }^n \mathrm{C}_r=1: 3: 5$ (given)
$
\begin{aligned}
& \frac{{ }^n C_r}{{ }^n C_{r-1}}=\frac{5}{3} \text { and } \frac{{ }^n C_{r-1}}{{ }^n C_{r-2}}=\frac{3}{1} \\
\Rightarrow \quad & \frac{n-r+1}{r}=\frac{5}{3} \text { and } \frac{n-r+2}{r-1}=\frac{3}{1}
\end{aligned}
$
$
\begin{aligned}
& {\left[\therefore \frac{{ }^n C_r}{{ }^n C_{r-1}}=\frac{n-r+1}{r}\right] } \\
& \Rightarrow 3 \mathrm{n}-8 \mathrm{r}+3=0 \text { and } \mathrm{n}-4 \mathrm{r}+5=0
\end{aligned}
$
Solving these for $\mathrm{n}, \mathrm{r}$ we get, $\mathrm{n}=7$ and $\mathrm{r}=3$
Question 5.
Find the value of $\left(a^2+\sqrt{a^2-1}\right)^4+\left(a^2-\sqrt{a^2-1}\right)^4$
Solution:
Suppose $a^2=x$ and $\sqrt{a^2-1}=y$
$
\therefore a^2+\sqrt{a^2-1}=x+y \text { and } a^2-\sqrt{a^2-1}=x-y
$
Using binomial theorem,
$
\begin{aligned}
& (x+y)^4={ }^4 \mathrm{C}_0 x^4+{ }^4 \mathrm{C}_1 x^3 y+{ }^4 \mathrm{C}_2 x^2 y^2+{ }^4 \mathrm{C}_3 x y^3+{ }^4 \mathrm{C}_4 y^4 \\
& \begin{aligned}
\Rightarrow(x+y)^4=x^4+4 x^3 y+6 x^2 y^2+4 x y^3+y^4
\end{aligned} \\
& \text { and }(x-y)^4={ }^4 \mathrm{C}_0 x^4-{ }^4 \mathrm{C}_1 x^3 y+{ }^4 \mathrm{C}_2 x^2 y^2-{ }^4 \mathrm{C}_3 x y^3+{ }^4 \mathrm{C}_4 y^4 \\
& \begin{aligned}
\Rightarrow(x-y)^4=x^4-4 x^3 y+6 x^2 y^2-4 x y^3+y^4
\end{aligned} \\
& \begin{aligned}
& \therefore(x+y)^4+(x-y)^4=2\left[x^4+6 x^2 y^2+y^4\right] \\
& \therefore\left(a^2+\sqrt{a^2-1}\right)^4+\left(a^2-\sqrt{a^2-1}\right)^4=2\left[\left(a^2\right)^4+6\left(a^2\right)^2\left(\sqrt{a^2-1}\right)^2+\left(\sqrt{a^2-1}\right)^4\right] \\
&=2\left[a^8+6 a^6-6 a^4+a^4-2 a^2+1\right]
\end{aligned} \\
& =2\left[a^8+6 a^6-5 a^4-2 a^2+1\right]
\end{aligned}
$
Question 6.
Show that the coefficient of the middle term in the expansion of $(1+x)^{2 n}$ is equal to the sum of the coefficients of the two middle terms in the expansion of $(1+x)^{2 n-1}$.
Solution:
In the expansion of $(1+x)^{2 n}$
Number of terms $=2 n+1$, which is odd
There is only one middle term, the $\frac{(2 n+1)+1}{2}$ th i.e. $(n+1)^{\text {th }}$ term
$\therefore T_{n+1}$ is the only middle term $T_{n+1}={ }^{2 n} C_n x^n$
Coefficient of $T_{n+1}={ }^{2 n} C_n$
In the expansion of $(1+x)^{2 n-1}$,
Number of terms $=2 n-1+1=2 n$, which is even,
There are two middle terms, the $\frac{2 n}{2}$ th i.e. $T_n$ and $T_{n+1}$
$T_n={ }^{2 n-1} C_{n-1} x^{n-1}$ and $T_{n+1}={ }^{2 n-1} C_n x^n$
Coefficient of $T_n={ }^{2 n-1} C_{n-1}$ and Coefficient of $T_{n+1}={ }^{2 n-1} C_n$
Sum of the coefficients of the two middle terms in the expansion of
$
\begin{aligned}
& (1+x)^{2 n-1}={ }^{2 n-1} C_n+{ }^{2 n-1} C_{n-1}={ }^{2 n} C_n \\
& \text { RHS of (1) = RHS of (2), }\left[\because{ }^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r\right]
\end{aligned}
$
Question 7.
If three consecutive coefficients in the expansion of $(1+x)^{\mathrm{n}}$ are in the ratio $6: 33: 110$, find $n$. Solution:
Let the consecutive coefficients ${ }^n C_r,{ }^n C_r+1$ and ${ }^n C_r+2$ be the coefficients of $T_{r+1}, T_{r+2}$ and $T_{r+3}$ then ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}:{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}:{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+2}=6: 33: 110$
$
\begin{aligned}
& \text { Now, } \frac{{ }^n C_r}{{ }^n C_{r+1}}=\frac{6}{33} \\
& \Rightarrow \frac{n !}{r !(n-r) !} \times \frac{(r+1) !(n-r-1) !}{n !}=\frac{2}{11} \\
& \Rightarrow \frac{r+1}{n-r}=\frac{2}{11} \\
& \Rightarrow 11 r+11=2 n-2 r \Rightarrow 2 n-13 r=11 \\
& \text { Again, } \frac{{ }^n C_{r+1}^n}{{ }^n C_{r+2}}=\frac{33}{110} \\
& \Rightarrow \frac{n !}{(r+1) !(n-r-1) !} \times \frac{(r+2) !(n-r-2) !}{n !}=\frac{3}{10} \\
& \Rightarrow \frac{(r+2)(r+1) !(n-r-2) !}{(r+1) !(n-r-1)(n-r-2) !}=\frac{3}{10} \\
& \Rightarrow \frac{r+2}{n-r-1}=\frac{3}{10} \\
& \Rightarrow 10(r+2)=3(n-r-1) \\
& \Rightarrow 3 n-13 r=23
\end{aligned}
$
Subtracting (2) from (1), we get $n=12$
Question 8 .
If the sum of the coefficients in the expansion of $(x+y)^{\mathrm{n}}$ is 4096 . Then find the greatest coefficient in the expansion.
Solution:
Given that, Sum of the coefficients in the expansion of $(x+y)^{\mathrm{n}}=4096$
$
\therefore{ }^{\mathrm{n}} \mathrm{C}_0+{ }^{\mathrm{n}} \mathrm{C}_1+{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=4096
$
$\left[\therefore\right.$ Sum of binomial coefficients in the expansion of $(\mathrm{x}+\mathrm{a})^{\mathrm{n}}$ is $2^{\mathrm{n}}$ ]
$
\begin{aligned}
& \Rightarrow 2^{\mathrm{n}}=4096=2^{12} \\
& \Rightarrow n=12 \text { (even) }
\end{aligned}
$
So the greatest coefficient $=$ Coefficient of the middle term $\left(\frac{n}{2}+1\right)^{\text {th }}$ term
$=$ Coefficient of the middle term $\left(\frac{12}{2}+1\right)^{t h}$ term $=$ Coefficient of the $7^{\text {th }}$ term
Hence the greatest coefficient $={ }^{12} \mathrm{C}_6=\frac{(12) !}{6 !(12-6) !}=\frac{(12) !}{6 ! 6 !}=\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=924$
Question 9.
Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$.
Solution:
The general term in the expansion of
$
\mathrm{T}_{r+1}={ }^{15} \mathrm{C}_r\left(x^4\right)^{15-r}\left(-\frac{1}{x^3}\right)^r={ }^{15} \mathrm{C}_r(-1)^r x^{60-4 r} x^{-3 r}={ }^{15} \mathrm{C}_r(-1)^r x^{60-4 r-3 r}={ }^{15} C_r(-1)^r x^{60-7}
$
This will involve $x^{-17}$ if $60-7 r=-17 \Rightarrow 7 r=77 \Rightarrow r=11$
$
\therefore T_{11+1}={ }^{15} C_4(-1)^{11} x^{-17}=\frac{-15 \times 14 \times 13 \times 12}{4 \times 3 \times 2 \times 1} x^{-17}=-1365 x^{-17}
$
Hence, the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$ is -1365
Question 10.
If $p$ is a real number and if the middle term in the expansion of $\left(\frac{p}{2}+2\right)^8$ is 1120 , find $l$
Solution:
In the equation of $\left(\frac{p}{2}+2\right)^8$, Number of terms $=8+1=9$ (odd)
$\therefore$ There is only one middle term i.e. $\left(\frac{9+1}{2}\right)^{\text {th }}$ or $5^{\text {th }}$ term
$
\begin{aligned}
& T_{r+1}={ }^8 C_r\left(\frac{p}{2}\right)^r(2)^{8-r} \\
& \therefore T_5=T_{4+1}={ }^8 C_4\left(\frac{p}{2}\right)^4(2)^{8-4}=1120 \text { (Given) } \\
& \Rightarrow \frac{8 !}{4 !}\left(\frac{p}{2}\right)^4(2)^4=1120 ! \\
& \Rightarrow \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} p^4=1120 \Rightarrow 70 p^4=1120 \\
& \Rightarrow p^4=\frac{1120}{70}=16 \Rightarrow p^2=4, \text { so } p= \pm 2
\end{aligned}
$