Exercise 5.2 - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions
Updated On 26-08-2025 By Lithanya
You can Download the Exercise 5.2 - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Ex 5.2
Question 1.
Write the first 6 terms of the sequences whose $\mathrm{n}^{\text {th }}$ terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them.
(i) $\frac{1}{2^{n+1}}$
(ii) $\frac{(n+1)(n+2)}{n+3(n+4)}$
(iii) $4\left(\frac{1}{2}\right)^n$
(iv) $\frac{(-1)^n}{n}$
(v) $\frac{2 n+3}{3 n+4}$
(vi) $\frac{3 n-2}{3^{n-1}}$
Solution:
(i) $\begin{aligned} t_n & =\frac{1}{2^{n+1}} \\ t_1 & =\frac{1}{2^{1+1}}=\frac{1}{2^2} ; t_2=\frac{1}{2^3} ; t_3=\frac{1}{2^4} ; t_4=\frac{1}{2^5} ; t_5=\frac{1}{2^6} ; t_6=\frac{1}{2^7}\end{aligned}$
So, the first six terms are $\frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}, \frac{1}{2^6}$ and $\frac{1}{2^7}$ which is a G.P. with $a=\frac{1}{2^2}$ and $r=\frac{1}{2}$.
(ii)
$
\begin{aligned}
& t_n=\frac{(n+1)(n+2)}{n+3(n+4)} \\
& t_1=\frac{(1+1)(1+2)}{1+3(1+4)}=\frac{2 \times 3}{1+15}=\frac{6}{16}=\frac{3}{8} \\
& t_2=\frac{(3)(4)}{2+3(6)}=\frac{12}{2+18}=\frac{12}{20}=\frac{3}{5} \\
& t_3=\frac{(4)(5)}{3+3(7)}=\frac{20}{24}=\frac{5}{6} \\
& t_4=\frac{(5)(6)}{4+3(8)}=\frac{30}{4+24}=\frac{30}{28}=\frac{15}{14} \\
& t_5=\frac{(6)(7)}{5+3(9)}=\frac{42}{32}=\frac{21}{16} \\
& t_6=\frac{(7)(8)}{6+3(10)}=\frac{56}{36}=\frac{14}{9}
\end{aligned}
$
So the first six terms are $\frac{3}{8}, \frac{3}{5}, \frac{5}{6}, \frac{15}{14}, \frac{21}{16}, \frac{14}{9}$.
It is not a G.P. or A.P. or H.P. or A.G.P.
(iii)
$
\begin{aligned}
& t_n=4\left(\frac{1}{2}\right)^n \\
& t_1=4\left(\frac{1}{2}\right)^1=2 \\
& t_2=4\left(\frac{1}{2}\right)^2=4 \times \frac{1}{4}=1 \\
& t_3=4\left(\frac{1}{2}\right)^3=\frac{4}{8}=\frac{1}{2} ; t_4=4\left(\frac{1}{2}\right)^4=\frac{4}{16}=\frac{1}{4} \\
& t_5=4\left(\frac{1}{2}\right)^5=\frac{4}{32}=\frac{1}{8} ; t_6=4\left(\frac{1}{2}\right)^6=\frac{4}{64}=\frac{1}{16}
\end{aligned}
$
So the first six terms are $2,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ and $\frac{1}{16}$ which is a G.P. with $a=2$ and $r=\frac{1}{2}$.
(iv)
$
\begin{aligned}
& t_n=\frac{(-1)^n}{n} \\
& t_1=\frac{(-1)^1}{1}=-1 \quad ; \quad t_2=\frac{(-1)^2}{2}=\frac{1}{2} \\
& t_3=\frac{(-1)^3}{3}=-\frac{1}{3} \quad ; \quad t_4=\frac{(-1)^4}{4}=\frac{1}{4} \\
& t_5=\frac{(-1)^5}{5}=-\frac{1}{5} \quad ; \quad t_6=\frac{(-1)^6}{6}=\frac{1}{6}
\end{aligned}
$
So the first 6 terms are $-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \frac{1}{6}$.
It is not an A.P. or G.P. or H.P. or A.G.P
(v) $t_n=\frac{2 n+3}{3 n+4}$
$
\begin{aligned}
& t_1=\frac{2+3}{3+4}=\frac{5}{7} \quad ; \quad t_2=\frac{4+3}{6+4}=\frac{7}{10} \\
& t_3=\frac{6+3}{9+4}=\frac{9}{13} \quad ; \quad t_4=\frac{8+3}{12+4}=\frac{11}{16} \\
& t_5=\frac{10+3}{15+4}=\frac{13}{19} \quad ; \quad t_6=\frac{12+3}{18+4}=\frac{15}{22} \\
&
\end{aligned}
$
So the first 6 terms are $\frac{5}{7}, \frac{7}{10}, \frac{9}{13}, \frac{11}{16}, \frac{13}{19}$ and $\frac{15}{22}$.
It is not an A.P. or G.P. or H.P. or A.G.P.
(vi) $t_n=\frac{3 n-2}{3^{n-1}}$
$
\begin{aligned}
t_1 & =\frac{3-2}{3^0}=1 & ; & t_2=\frac{6-2}{3^1}=\frac{4}{3} \\
t_3 & =\frac{9-2}{3^2}=\frac{7}{9} & ; & t_4=\frac{12-2}{3^3}=\frac{10}{27} \\
t_5 & =\frac{15-2}{3^4}=\frac{13}{81} & ; & t_6=\frac{18-2}{3^5}=\frac{16}{243}
\end{aligned}
$
So the first 6 terms are $1, \frac{4}{3}, \frac{7}{9}, \frac{10}{27}, \frac{13}{81}$ and $\frac{16}{243}$ i.e., $\frac{1}{3^0}, \frac{4}{3^1}, \frac{7}{3^2}, \frac{10}{3^3}, \frac{13}{3^4}, \frac{16}{3^5}$.
It is a A.G.P.
Question 2.
Write the first 6 terms of the sequences whose $n^{\text {th }}$ term $a_n$ is given below.
(i) $a_n= \begin{cases}n+1 & \text { if } n \text { is odd } \\ n & \text { if } n \text { is even }\end{cases}$
Solution:
$
\begin{aligned}
& a_1=1+1=2 ; a_2=2 \\
& a_3=3+1=4 ; a_4=4 \\
& a_5=5+1=6 ; a_6=6
\end{aligned}
$
So, the first 6 terms are $2,2,4,4,6,6$
(ii) $a_n=\left\{\begin{array}{lr}1 & \text { if } n=1 \\ 2 & \text { if } n=2 \\ a_{n-1}+a_{n-2} & \text { if } n>2\end{array}\right.$
Solution:
$
\begin{aligned}
& a_1=1 ; a_2=2, a_3=3 \\
& a_4=a_3+a_2+a_1=3+2+1=6 \Rightarrow a_4=6 \\
& a_5=a_4+a_3+a_2=6+3+2=11 \Rightarrow a_5=11 \\
& a_6=a_5+a_4+a_3=11+6+3=20 \Rightarrow a_6=20
\end{aligned}
$
So the first 6 terms are $1,2,3,5,8,13$.
(iii) $a_n= \begin{cases}n & \text { if } n \text { is } 1 \\ a_{n-1}+a_{n-2}+a_{n-3} & \text { if } n>3\end{cases}$
Solution:
$
\begin{aligned}
& a_1=1 \quad ; a_2=2 \quad ; \quad a_3=3 \\
& a_4=a_3+a_2+a_1=3+2+1=6 \quad \Rightarrow \quad \Rightarrow \quad a_4=6 \\
& a_5=a_4+a_3+a_2=6+3+2=11 \quad \Rightarrow a_5=11 \\
& a_6=a_5+a_4+a_3=11+6+3=20 \Rightarrow a_6=20
\end{aligned}
$
So the first 6 terms are $1,2,3,6,11,20$.
Question 3.
Write the $n_{\text {th }}$ term of the following sequences.
Solution:
(i) $2,2,4,4,6,6 \ldots \ldots$
Solution:
$a_n= \begin{cases}n+1 & \text { if } n \text { is odd } \\ n & \text { if } n \text { is even }\end{cases}$
(ii) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots$
Solution:
Nr: $1,2,3, \ldots \ldots \mathrm{t}_{\mathrm{n}}=\mathrm{n}$
Dr: $2,3,4, \ldots . \mathrm{t}_{\mathrm{n}}=\mathrm{n}+1$
So the $n^{\text {th }}$ term is $t_n=\frac{n}{n+1} \forall n \in \mathrm{N}$
(iii) $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{9}{10}, \ldots$
Solution:
Nr: $1,3,5,7, \ldots$ which is an A.P. $a=1, d=3-1=2$
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\mathrm{t}_{\mathrm{n}}=1+(\mathrm{n}-1) 2=1+2 \mathrm{n}-2=2 \mathrm{n}-1$.
Dr : $2,4,6,8, \ldots$
So the $\mathrm{n}^{\text {th }}$ term is $2+(\mathrm{n}-1) 2=2+2 \mathrm{n}-2=2 \mathrm{n}$.
$
\therefore t_n=\frac{2 n-1}{2 n}, \forall n \in \mathrm{N}
$
(iv) $6,10,4,12,2,14,0,16,-2, \ldots$.
Solution:
$
\begin{aligned}
& t_1=6 ; t_2=10 \\
& t_3=4 ; t_4=12 \\
& t_5=2 ; t_6=14 \\
& t_7=0 ; t_8=16
\end{aligned}
$
When $\mathrm{n}$ is odd, the sequence is $6,4,2,0, \ldots$
(i.e.) $a=6$ and $d=4-6=-2$.
So, $\mathrm{t}_{\mathrm{n}}=6+(\mathrm{n}-1)(-2)=6-2 \mathrm{n}+2=8-2 \mathrm{n}$
When $\mathrm{n}$ is even, the sequence is $10,12,14,16, \ldots$
Here $\mathrm{a}=10$ and $\mathrm{d}=12-10=2$
$
t_n=10+(n-1) 2=10+2 n-2=2 n+8 \text { (i.e.) } 8+2 n
$
$\therefore t_n=\left\{\begin{array}{l}8-2 n \text { when } n \text { is odd } \\ 8+2 n \text { when } n \text { is even }\end{array} \quad\right.$ or $t_n= \begin{cases}7-n & \text { when } n \text { is odd } \\ 8+n & \text { when } n \text { is even }\end{cases}$
Question 4.
The product of three increasing numbers in GP is 5832 . If we add 6 to the second number and 9 to the third number, then resulting numbers form an AP. Find the numbers in GP.
Solution:
The 3 numbers in a G.P. is taken as $\frac{a}{r}$, a, ar
Their product is 5832 .
$
\Rightarrow \frac{a}{r} \times a \times a r=5832 \text { (i.e.) } a^3=5832=18^3 \Rightarrow a=18
$
$\therefore$ The 3 numbers are $\frac{18}{r}, 18,18 r$
When 6 added to $t_2$ and 9 added to $t_3$ we get $\frac{18}{r}, 24,18 r+9$ which is an A.P.
$
\begin{aligned}
& \quad \frac{18}{r}, 24,18 r+9 \text { are in A.P. } \\
& \Rightarrow \quad 24-\frac{18}{r}=18 r+9-24 \\
& \text { (i.e.) } \quad 24-9+24=18 r+\frac{18}{r} \\
& \quad 18 r+\frac{18}{r}=39 \\
& (\div \text { by } 3) 6 r+\frac{6}{r}=13 \\
& 6 \mathrm{r}^2+6=13 \\
& 6 \mathrm{r}^2-13 \mathrm{r}+6=0 \\
& (3 \mathrm{r}-2)(2 \mathrm{r}-3)=0 \\
& \mathrm{r}=2 / 3 \text { or } 3 / 2
\end{aligned}
$
When $a=18$ and $r=2 / 3$, the G.P. is $18,18 \times \frac{2}{3}, 18 \times\left(\frac{2}{3}\right)^2, \ldots \ldots$.
(i.e.) $18,12,8, \ldots$
When $a=18$ and $r=3 / 2$, the G.P. is $18,18 \times \frac{3}{2}, 18 \times \frac{3}{2} \times \frac{3}{2}, \ldots \ldots$
(i.e.) $18,2 \dot{7}, \frac{81}{2}, \ldots$
Question 5.
Write the $n^{\text {th }}$ term of the sequence $\frac{3}{1^2 2^2}, \frac{5}{2^2 3^2}, \frac{7}{3^2 4^2}, \ldots$ as a difference of two terms.
Solution:
$
\begin{aligned}
& t_1=\frac{3}{1^2 2^2}, t_2=\frac{5}{2^2 3^2}, t_3=\frac{7}{3^2 4^2} \\
& \mathrm{Nr}: 3,5,7, \ldots\{\text { A.P. } a=3, d=5-3=2\} \\
& t_n=3+(n-1) 2=3+2 n-2=2 n+1 \\
& \text { Dr : } 1^2 2^2, 2^2 3^2, \ldots \\
& \text { So } t_n=n^2(n+1)^2 \\
& \therefore n^{\text {th }} \text { term }=\frac{2 n+1}{n^2(n+1)^2}=\frac{(n+1)^2-n^2}{n^2(n+1)^2}=\frac{1}{n^2}-\frac{1}{(n+1)^2}
\end{aligned}
$
Question 6.
If $\mathrm{t}_{\mathrm{k}}$ is the $\mathrm{k}^{\text {th }}$ term of a G.P., then show that $\mathrm{t}_{\mathrm{n}-\mathrm{k}}, \mathrm{t}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}+\mathrm{k}$ also form a GP for any positive integer $\mathrm{k}$. Solution:
Let a be the first term and $\mathrm{r}$ be the common ratio.
We are given $t_k=a r^{k-1}$
We have to Prove : $t_{n-k}, t_n, t_n+k$ form a G.P.
$
\begin{aligned}
t_{n-k} & =a r^{n-k-1} \\
t_n & =a r^{n-1} \\
t_{n+k} & =a r^{n+k-1}
\end{aligned}
$
Now $\quad \frac{t_n}{t_{n-k}}=\frac{a r^{n-1}}{a r^{n-k-1}}=r^{n-1-n+k+1}=r^k$
Also $\quad \frac{t_{n+k}}{t_n}=\frac{a r^{n+k-1}}{a r^{n-1}}=r r^{n+k-1-n+1}=r^k$
Now $\quad \frac{t_n}{t_{n-k}}=\frac{t_{n+k}}{t_n}$
$\Rightarrow \quad t_{n-k}, t_n, t_{n+k}$ form a G.P.
Question 7.
If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in geometric progression, and if $a^{\frac{1}{2}}=b^{\frac{1}{y}}=c^{\frac{1}{2}}$, then prove that $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in arithmetic progression.
Solution:
Given a, b, c are in G.P.
$
\begin{aligned}
& \Rightarrow b^2=a c \\
& \Rightarrow \log b^2=\log a c \\
& \text { (i.e.) } 2 \log b=\log a+\log c .
\end{aligned}
$
We are given $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}=k$ (say)
$
\begin{aligned}
& \Rightarrow \quad \log a^k=\frac{1}{x} ; \log b^k=\frac{1}{y} ; \log c^k=\frac{1}{7} \\
& \Rightarrow \quad \log a^k=\frac{1}{x} \Rightarrow x=\log k^a \\
& \text { Similarly } \quad y=\log k^b \\
& z=\log k^c \\
&
\end{aligned}
$
Substituting these values in equation (1) we get $2 y=x+z \Rightarrow x, y z$ are in A.P.
Question 8.
The AM of two numbers exceeds their GM by 10 and $\mathrm{HM}$ by 16 . Find the numbers.
Solution:
Let the two numbers be $a$ and $b$.
Their A.M. $=\frac{a+b}{2}$
G.M. $=\sqrt{a b}$ and H.M. $=\frac{2 a b}{a+b}$
We are given A.M. = G.M. $+10=$ H.M. +16
(i.e.) $\frac{a+b}{2}=\sqrt{a b}+10$
and $\frac{a+b}{2}=\frac{2 a b}{a+b}+16$
from (2) $\frac{a+b}{2}-\frac{2 a b}{a+b}=16$
$
\Rightarrow(a+b)^2-4 a b=16(2)(a+b)
$
(i.e.) $\quad(a-b)^2=32(a+b)$
$
\begin{aligned}
& (1) \Rightarrow \frac{a+b}{2}=\sqrt{a b}+10 \\
& \Rightarrow \quad a+b=2 \sqrt{a b}+20 \\
& \Rightarrow \quad a+b-20=2 \sqrt{a b}
\end{aligned}
$
So, $(a+b-20)^2=4 a b$
$
\begin{aligned}
& \text { (i.e.) }(a+b)^2+400-40(a+b)=4 a b \\
& (a+b)^2-4 a b=40(a+b)-400 \\
& \text { from(3) }(a+b)^2-4 a b=32(a+b) \\
& \Rightarrow 32(a+b)=40(a+b)-400 \\
& (-b y 8) 4(a+b)=5(a+b)-50 \\
& 4 a+4 b=5 a+5 b-50 \\
& a+b=50 \\
& a=50-b
\end{aligned}
$
Substituting $a=50-\mathrm{b}$ in (3) we get
$
\begin{aligned}
& (50-\mathrm{b}-\mathrm{b})^2=32(50) \\
& (50-2 b)^2=32 \times 50 \\
& {[2(25-b)]^2=32 \times 50} \\
& \text { (i.e.) } \quad 4(25-b)^2=32 \times 50 \\
& \Rightarrow \quad(25-b)^2=\frac{32 \times 50}{4}=8 \times 50=400=20^2 \\
& \Rightarrow \quad 25-b= \pm 20 \\
&
\end{aligned}
$
When $b=5, a=50-5=45$
When $b=45, \mathrm{a}=50-45=5$
So the two numbers are 5 and 45 .
Question 9.
If the roots of the equation $(q-r) x^2+(r-p) x+p-q=0$ are equal, then show that $p, q$ and $r$ are in $A P$.
Solution:
The roots are equal $\Rightarrow \Delta=0$
(i.e.) $b^2-4 a c=0$
Hence, $a=q-r ; b=r-p ; c=p-q$
$\mathrm{b}^2-4 \mathrm{ac}=0$
$\Rightarrow(\mathrm{r}-\mathrm{p})^2-4(\mathrm{q}-\mathrm{r})(\mathrm{p}-\mathrm{q})=0$
$\mathrm{r}^2+\mathrm{p}^2-2 \mathrm{pr}-4\left[\mathrm{qr}-\mathrm{q}^2-\mathrm{pr}+\mathrm{pq}\right]=0$
$\mathrm{r}^2+\mathrm{p}^2-2 \mathrm{pr}-4 \mathrm{qr}+4 \mathrm{q}^2+4 \mathrm{pr}-4 \mathrm{pq}=0$
(i.e.) $p^2+4 q^2+r^2-4 p q-4 q r+2 p r=0$
(i.e.) $(p-2 q+r)^2=0$
$\Rightarrow \mathrm{p}-2 \mathrm{q}+\mathrm{r}=0$
$\Rightarrow \mathrm{p}+\mathrm{r}=2 \mathrm{q}$
$\Rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}$ are in A.P.
Question 10.
If $a, b, c$ are respectively the $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms of a G.P., show that $(\mathrm{q}-\mathrm{r}) \log a+(r-p) \log \mathrm{b}+(\mathrm{p}-$ q) $\log c=0$.
Solution:
Let the G.P. be $1, \mathrm{lk}, 1 \mathrm{lk}^2, \ldots$
We are given $t_p=a, t_q=b, t_{\mathrm{r}}=c$
$\begin{aligned}
& \Rightarrow a=l k^{p-1} ; b=l k^{q-1} ; c=l k^{r-1} \\
& a=l k^{p-1} \quad \Rightarrow \quad \log a=\log l+\log k^{p-1}=\log l+(p-1) \log k \\
& b=l k^{q-1} \quad \Rightarrow \quad \log b=\log l+\log k^{q-1}=\log l+(q-1) \log k \\
& c=l k^{r-1} \quad \Rightarrow \quad \log c=\log l+\log k^{r-1}=\log l+(r-1) \log k \\
& \text { LHS }=(\mathrm{q}-\mathrm{r}) \log \mathrm{a}+(\mathrm{r}-\mathrm{p}) \log \mathrm{b}+(\mathrm{p}-\mathrm{q}) \log \mathrm{c} \\
& =(q-r)[\log l+(p-1) \log k]+(r-p)[\log l+(q-1) \log k]+ \\
& (p-q)[\log l+(r-1) \log k] \\
& =\log l[p-q+q-r+r-p]+\log k[(q-r)(p-1)+(r-p)(q-1)+ \\
& (p-q)(r-1)] \\
& =\log l(0)+\log k[p(q-r)+q(r-p)+r(p-q)-(q-r+r-p+p-q)] \\
& =0=\text { RHS } \text {. } \\
&
\end{aligned}$