Exercise 5.2-Additional Questions - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions
Updated On 26-08-2025 By Lithanya
You can Download the Exercise 5.2-Additional Questions - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Additional Questions Solved
Question 1.
Find the first five terms of the sequence given by $\left\{\begin{array}{c}a_1=1 \\ a_n=a_{n-1}+2, n \geq 2\end{array}\right.$.
Solution:
Here $a_1=1$
Substituting $\mathrm{n}=2$, we obtain $\mathrm{a}_2=\mathrm{a}_1+2=1+2=3$
Substituting $\mathrm{n}=3,4$ and 5 , we obtain respectively
$
\begin{aligned}
& a_3=a_2+2=3+2=5, a_4=a_3+2=5+2=7 \\
& a_5=a_4+2=7+2=9
\end{aligned}
$
Thus, the first five terms are $1,3,5,7$ and 9 .
Question 2.
Find the $18^{\text {th }}$ and $25^{\text {th }}$ term of the sequence defined by
$
a_n= \begin{cases}n(n+2), & \text { if } n \text { is even natural number } \\ \frac{4 n}{n^2+1}, & \text { if } n \text { is odd natural number }\end{cases}
$
Solution:
When $\mathrm{n}=18$ (even)
$
\mathrm{a}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+2)=18(18+2)=18(20)=360
$
When $\mathrm{n}=25$ (odd)
$
a_n=\frac{4 n}{n^2+1}=\frac{4(25)}{(25)^2+1}=\frac{100}{625+1}=\frac{100}{626}=\frac{50}{313}
$
Question 3.
Write the first six terms of the sequences given by
(i) $a_1=a_2=1=a_{n-1}+a_{n-2}(n \geq 3)$
(ii) $\mathrm{a}_1=4, \mathrm{a}_{\mathrm{n}+1}=2 n \mathrm{a}_{\mathrm{n}}$
Solution:
(i) Here $\mathrm{a}_1=\mathrm{a}_2=1=\mathrm{a}_{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}-2}(\mathrm{n} \geq 3)$
Putting $n=3, \mathrm{a}_3=\mathrm{a}_2+\mathrm{a}_1=1+1=2$
Putting $n=4, a_4=a_3+a_2=2+1=3$
Putting $n=5, a_5=a_4+a_2=3+2=5$
Putting $n=6, a_6=a_5+a_4=5+3=8$
$\therefore$ First six terms of the sequence are $1,1,2,3,5,8$
(ii) Here $a_1=4$ and $a_{n+1}=2 n a_n$
Putting $\mathrm{n}=1, \mathrm{a}_2=2 \times 1 \times \mathrm{a}_1=2 \times 1 \times 4=8$
Putting $\mathrm{n}=2, \mathrm{a}_3=2 \times 2 \times \mathrm{a}_2=4 \times 8=32$
Putting $n=3, a_4=8 \times 192=1536$
Putting $\mathrm{n}=4, \mathrm{a}_5=2 \times 4 \times \mathrm{a}_4=8 \times 192=1536$
Putting $\mathrm{n}=5, \mathrm{a}_6=2 \times 5 \times \mathrm{a}_5=10 \times 1536=15360$
Question 4.
An A.P. consists of 21 terms. The sum of the three terms in the middle is 129 and of the last three is 237. Find the series.
Solution:
Let $\mathrm{a}_1$ be the first term and $\mathrm{d}$, be the common difference. Here $\mathrm{n}=21$.
$\therefore$ The three middle terms are $\mathrm{a}_{10}, \mathrm{a}_{11}, \mathrm{a}_{12}$
Now, $\mathrm{a}_{10}+\mathrm{a}_{11}+\mathrm{a}_{12}=129[$ Given $]$
$
\begin{aligned}
& \therefore\left(a_1+9 d\right)+\left(a_1+10 d\right)+\left(a_1+11 d\right)=129 \\
& \Rightarrow 3 a_1+30 d=129 \Rightarrow a_1+10 d=43 \ldots \ldots \text { (i) }
\end{aligned}
$
The last three terms are $a_{19}, a_{20}, a_{21}$
$
\begin{aligned}
& \mathrm{a}_{19}, \mathrm{a}_{20}, \mathrm{a}_{21}=237 \text { [Given] } \\
& \therefore\left(\mathrm{a}_1+18 \mathrm{~d}\right)+\left(\mathrm{a}_1+19 \mathrm{~d}\right)+\left(\mathrm{a}_1+20 \mathrm{~d}\right)=237 \\
& \text { (i.e.,) } 3 \mathrm{a}_1+57 \mathrm{~d}=237 \Rightarrow \mathrm{a}_1+19 \mathrm{~d}=79 \ldots \text { (2) }
\end{aligned}
$
Subtracting (i) from (ii), we get $9 \mathrm{~d}=36, \Rightarrow d=4$
$\therefore$ From (i), $\mathrm{a}_1+40=43 \Rightarrow \mathrm{a}_1=3$
Hence, the series is $3,7,11,15 \ldots \ldots$
Question 5.
Prove that the product of the $2^{\text {nd }}$ and $3^{\text {rd }}$ terms of an arithmetic progression exceeds the product of the
first and fourth by twice the square of the difference between the $1^{\text {st }}$ and $2^{\text {nd }}$.
Solution:
Let ' $a$ ' be the first term and 'd' be the common difference of A.P.
Then, $a_1=a, a_2=a+(2-1) d=a+d$
$a_3=a+(3-1) d=a+2 d, a_4=a+(4-1) d=a+3 d$
We have to show that $a_2 \cdot a_3-a_1 \cdot a_4=2\left(a_2-a_1\right)^2$
$
\begin{aligned}
& \text { LHS }=a_2 \cdot a_3-a_1 \cdot a_4=(a+d)(a+2 d)-a(a+3 d) \\
& =a_2+3 a d+2 d_2-a_2-3 a d=2 d_2 \\
& \text { RHS }=2\left(a_2-a_1\right)^2=2 d_2
\end{aligned}
$
Since LHS = RHS. Hence proved.
Question 6.
If the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an A.P. are $a, b, c$ respectively, prove that $a(q-r)+b(r-p)+c(p-q)=0$.
Solution:
Let $\mathrm{A}$ be the first term and $\mathrm{D}$ be the common difference of A.P.
$
\begin{aligned}
& \mathrm{a}_{\mathrm{p}}=\mathrm{a}, \therefore \mathrm{A}+(\mathrm{p}-1) \mathrm{D}=\mathrm{a} \ldots \ldots(1) \\
& \mathrm{a}_{\mathrm{q}}=\mathrm{b}, \therefore \mathrm{A}+(\mathrm{q}-1) \mathrm{D}=\mathrm{b} \ldots \ldots(2) \\
& \mathrm{a}_{\mathrm{r}}=\mathrm{c}, \therefore \mathrm{A}+(\mathrm{r}-1) \mathrm{D}=\mathrm{c} \ldots \ldots(3) \\
& \therefore \mathrm{a}(\mathrm{q}-\mathrm{r})+\mathrm{b}(\mathrm{r}-\mathrm{p})+\mathrm{c}(\mathrm{p}-\mathrm{q})=[\mathrm{A}+(\mathrm{p}-1) \mathrm{D}](\mathrm{q}-\mathrm{r})+[\mathrm{A}+(\mathrm{q}-1) \mathrm{D}] \\
& (\mathrm{r}-\mathrm{p})+[\mathrm{A}+(\mathrm{r}-1) \mathrm{D}](\mathrm{p}-\mathrm{q})[\mathrm{U} \operatorname{sing}(1),(2) \text { and (3) }] \\
& =(\mathrm{q}-\mathrm{r}+\mathrm{r}-\mathrm{p}+\mathrm{p}-\mathrm{q}) \mathrm{A}+[(\mathrm{p}-1)(\mathrm{q}-\mathrm{r})+(\mathrm{q}-1)(\mathrm{r}-\mathrm{p})+(\mathrm{r}-1)(\mathrm{p}-\mathrm{q})] \mathrm{D} \\
& =(0) \mathrm{A}+(\mathrm{pq}-\mathrm{pr}-\mathrm{q}+\mathrm{r}+\mathrm{qr}-\mathrm{pq}-\mathrm{r}+\mathrm{p}+\mathrm{pr}-\mathrm{p}-\mathrm{q}+\mathrm{q}) \mathrm{D} \\
& =(0) \mathrm{A}+(0) \mathrm{D}=0
\end{aligned}
$
Question 7.
If $a, b, c$ are in A.P. and $p$ is the A.M. between a and $b$ and $q$ is the A.M. between $b$ and $c$, show that $b$ is the A.M. between $\mathrm{p}$ and $\mathrm{q}$.
Solution:
a, b, c are in A.P.
$2 \mathrm{~b}=\mathrm{a}+\mathrm{c} \ldots \ldots(1)$
$\mathrm{p}$ is the A.M. between a and $\mathrm{b}$
$
p=\frac{a+b}{2}
$
$\mathrm{q}$ is the A.M. between $\mathrm{b}$ and $\mathrm{c}$
$
q=\frac{b+c}{2}
$
Adding (2) and (3), we get $p+q=\frac{a+b}{2}+\frac{b+c}{2}=\frac{a+c+2 b}{2}=\frac{2 b+2 b}{2}=2 b$ [Using 1] $2 b=p+q$ or $b=\frac{p+q}{2}$
Hence, $b$ is the A.M. between $p$ and $\mathrm{q}$
Question 8 .
If $x, y, z$ be respectively the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a G.P. show that $x^{q-r}, y^{r-p}, z^{p-q}=1$ Solution:
Let $A$ be the first term and $\mathrm{R}$ be the common ratio of $G . P$.
$
\begin{aligned}
& a_{\mathrm{p}}=\mathrm{x} \Rightarrow \mathrm{x}=A R^{\mathrm{p}-1} \\
& \mathrm{a}_{\mathrm{q}}=\mathrm{y} \Rightarrow \mathrm{x}=A R^{\mathrm{q}-1} \\
& \mathrm{a}_{\mathrm{r}}=\mathrm{z} \Rightarrow \mathrm{x}=A R^{\mathrm{r}-1}
\end{aligned}
$
Raising (1), (2), (3) to the powers $q-r, r-p, p-q$ respectively, we get
$
\begin{aligned}
& x^{q-r}=\mathrm{A}^{q-r}, \mathrm{R}^{(q-r)(p-1)} \\
& y^{r-p}=\mathrm{A}^{r-p}, \mathrm{R}^{(r-p)(q-1)} \\
& z^{p-q}=\mathrm{A}^{p-q}, \mathrm{R}^{(p-q)(r-1)}
\end{aligned}
$
Multiplying (4), (5) and (6), we get
$
x^{q-r}, y^{r-p}, z^{p-q}=\mathrm{A}^{q-r+r-p+p-q}, \mathrm{R}^{(q-r)(p-1)+(r-p)(q-1)+(p-q)(r-1)}=\mathrm{A}^0 \times \mathrm{R}^0=1 \times 1=1
$
Hence, $x^{q-r}, y^{r-p}, z^{p-q}=1$