WELCOME TO SaraNextGen.Com

Exercise 5.3-Additional Questions - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions

Updated On 26-08-2025 By Lithanya


You can Download the Exercise 5.3-Additional Questions - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends

Additional Questions
Question 1.

If the ratio of the sums of $m$ terms and $n$ terms of an A.P. be $m^2: n^2$, prove that the ratio of its $m^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ terms is $(2 \mathrm{~m}-1):(2 \mathrm{n}-1)$.
Solution:
Let ' $a$ ' be the first term and $d$ be the common difference of A.P.
Using the given information, we have $\frac{S_m}{S_n}=\frac{m^2}{n^2}$
$
\begin{aligned}
& \frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^2}{n^2} \Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n} \\
\Rightarrow & 2 \mathrm{an}+(\mathrm{mn}-\mathrm{n}) \mathrm{d}=2 \mathrm{am}+(\mathrm{mn}-\mathrm{m}) \mathrm{d} \\
\Rightarrow & 2 \mathrm{an}-2 \mathrm{am}=(\mathrm{mn}-\mathrm{m}-\mathrm{mn}+\mathrm{n}) \mathrm{d} \\
\Rightarrow & 2 \mathrm{a}(\mathrm{n}-\mathrm{m})=(\mathrm{n}-\mathrm{m}) \mathrm{d} \Rightarrow \mathrm{d}=2 \mathrm{a},[\mathrm{n}-\mathrm{m} \neq 0, \mathrm{as} \mathrm{n} \neq \mathrm{m}] \\
& \text { Now, } \frac{a_m}{a_n}=\frac{a+(m-1) d}{a+(n-1) d}=\frac{a+(m-1) \cdot 2 a}{a+(n-1) \cdot 2 a}=\frac{a(1+2 m-2)}{a(1+2 n-2)}=\frac{2 m-1}{2 n-1}
\end{aligned}
$
Hence, the required ratio is $(2 m-1):(2 n-1)$
Question 2.
Determine the number of terms of geometric progression $\left\{a_n\right\}$ if $a_1=3, a_n=96, S_n=189$.
Solution:

Let $r$ be the common ratio of G.P. $a_n=a_1 r^{n-1}=3 r^{n-1}$
But, $a_n=96[$ Given $]$
$
\begin{aligned}
& \therefore 3 r^{n-1}=96 \Rightarrow r^{n-1}=96 \div 3=32 \\
& \therefore r^n=32 r \ldots \ldots \ldots \ldots . .(1)
\end{aligned}
$
Now $S_n=\frac{a_1\left(r^n-1\right)}{r-1} \Rightarrow 189=\frac{3(32 r-1)}{r-1}$
$
\begin{aligned}
& \therefore \frac{32 r-1}{r-1}=189 / 3=63 \\
& \therefore 32 r-1=63(r-1) \Rightarrow 32 r-1=63 r-63 \\
& \therefore 63 r-32 r=63-1 \\
& \Rightarrow 31 r=62 \Rightarrow r=62 / 31=2 \\
& \text { Now, } r^{n-1}=32 \Rightarrow 2^{n-1}=2^5 \\
& \Rightarrow n-1=5, \text { or } n=5+1=6(\text { i.e }) \text { Number of terms }=6
\end{aligned}
$
Question 3.
The sum of first three terms of a G.P. is to the sum of the first six terms as $125: 152$. Find the common ratio of the G.P.
Solution:

Here, $\frac{S_3}{S_6}=\frac{125}{152}$
$
\begin{aligned}
& \Rightarrow \frac{a\left(r^3-1\right) /(r-1)}{a\left(r^6-1\right) /(r-1)}=\frac{125}{152} \Rightarrow \frac{r^3-1}{r^6-1}=\frac{125}{152} \\
& \therefore \frac{r^3-1}{\left(r^3-1\right)\left(r^3+1\right)}=\frac{125}{152} \Rightarrow \frac{1}{r^3+1}=\frac{125}{152} \\
& \therefore 152=125 r^3+125 \Rightarrow 125 r^3=27 \\
& \therefore r^3=\frac{27}{125}=\left(\frac{3}{5}\right)^3 \\
& \Rightarrow r=\left\{\left(\frac{3}{5}\right)^3\right\}^{1 / 3}=\frac{3}{5}
\end{aligned}
$
Hence, the common ratio of the G.P. is $\frac{3}{5}$
Question 4.
Find the sum to $n$ terms the series: $(x+y)+\left(x^2+x y+y^2\right)+\left(x^3+x^2 y+x y^2+y^3\right)+\ldots$
Solution:
$
\begin{aligned}
& (\mathrm{x}+\mathrm{y})+\left(\mathrm{x}^2+\mathrm{xy}+\mathrm{y}^2\right)+\left(\mathrm{x}^3+\mathrm{x}^2 \mathrm{y}+\mathrm{xy}^2+\mathrm{y}^3\right)+\ldots \text { to } \mathrm{n} \text { terms } \\
& =\frac{x^2-y^2}{x-y}+\frac{x^3-y^3}{x-y}+\frac{x^4-y^4}{x-y}+\ldots \text { to } n \text { terms } \\
& =\frac{1}{x-y}\left[\left(x^2-y^2\right)+\left(x^3-y^3\right)+\left(x^4-y^4\right)+\ldots \text { to } n \text { terms }\right] \\
& =\frac{1}{x-y}\left[\left(x^2+x^3+x^4+\ldots \text { to } n \text { terms }\right)-\left[\left(y^2+y^3+y^4+\ldots \text { to } n \text { terms }\right)\right]\right. \\
& =\frac{1}{x-y}\left[\frac{x^2\left(x^n-1\right)}{x-1}-\frac{y^2\left(y^n-1\right)}{y-1}\right]
\end{aligned}
$

Question 5 .
Sum the series: $(1+x)+\left(1+x+x^2\right)+\left(1+x+x^2+x^3\right)+\ldots$ up to $n$ terms
Solution:
$(1+x)+\left(1+x+x^2\right)+\left(1+x+x^2+x^3\right)+\ldots$ up to $n$ terms $=\frac{1-x^2}{1-x}+\frac{1-x^3}{1-x}+\ldots \frac{1-x^4}{1-x}+\ldots$ to $n$ terms
$=\frac{1}{1-x}\left[(1+1+1+\ldots\right.$ to $n$ terms $)-\left(x^2+x^3+x^4 \ldots\right.$ to $n$ terms $)$
$
=\frac{1}{1-x}\left[n-\frac{x^2\left(1-x^n\right)}{1-x}\right]
$

Question 6.
Sum up to $\mathrm{n}$ terms the series: $7+77+777+7777+\ldots$
Solution:
$\mathrm{S}=1+77+777+7777+\ldots$ to $\mathrm{n}$ terms
$
\begin{aligned}
& =\frac{7}{9}[9+99+999+9999+\ldots \text { to } n \text { terms }] \\
& =\frac{7}{9}\left[(10-1)+\left(10^2-1\right)+\left(10^3-1\right)+\left(10^4-1\right)+\ldots \text { to } n \text { terms }\right] \\
& =\frac{7}{9}\left[\left(10+10^2+10^3+\ldots \text { to } n \text { terms }\right)-(1+1+1+\ldots n \text { terms })\right] \\
& =\frac{7}{9}\left[\frac{10\left(10^n-1\right)}{10-1}-n\right]=\frac{7}{9}\left[\frac{10}{9}\left(10^n-1\right)-n\right] \\
& =\frac{7}{81}\left[10^{n+1}-9 n-10\right]
\end{aligned}
$
Question 7.
If $S_1, S_2, S_3$ be respectively the sums of $n, 2 n, 3 n$, terms of a G.P. , then prove that $S_1\left(S_3-S_2\right)=\left(S_2-\right.$ $\left.\mathrm{S}_1\right)_2$
Solution:
Let a be the first term and $\mathrm{r}$ be the common ratio of G.P.

$
\therefore S_1=\frac{a\left(r^n-1\right)}{r-1}, S_2=\frac{a\left(r^{2 n}-1\right)}{r-1}, S_3=\frac{a\left(r^{3 n}-1\right)}{r-1}
$
where $r \neq 1$
$
\begin{aligned}
& S_3-S_2=\frac{a}{r-1}\left(r^{3 n}-r^{2 n}\right)=\frac{a\left(r^n-1\right)}{r-1} r^{2 n} \\
& S_1\left(S_3-S_2\right)=\frac{a\left(r^n-1\right)}{r-1} \times \frac{a\left(r^n-1\right)}{7^{2 r-1}} r^{2 n} \\
& =\left[\frac{a\left(\stackrel{r}{r}^n-1\right)}{r-1} \cdot r^n\right] \\
& \left(S_2-S_1\right)=\frac{a}{r-1}\left(r^{2 n}-r^n\right)=\frac{a\left(r^n-1\right)}{r-1} r^n \\
& \therefore S_1\left(S_3-S_2\right)=\left(S_2-S_1\right)^2 \text { [From (1) and (2)] } \\
&
\end{aligned}
$
When $r=1, S_1=n a, S_2=2 n a$ and $S_3=3 n a$
Then, $\left(S_2-S_1\right)^2=(2 n a-n a)^2=n^2 a^2$ and
$
\begin{aligned}
& S_1\left(S_3-S_2\right)=n a(3 n a-2 n a)=n a(n a)=n^2 a^2 \\
& \therefore S_1\left(S_3-S_2\right)=\left(S_2-S_1\right)^2
\end{aligned}
$
Question 8.
If sum of the $n$ terms of a $G . P$ be $S$, their product $P$ and the sum of their reciprocals $R$, the prove that $P^2=\left(\frac{S}{R}\right)^n$
Solution:

Let a be the first term and $\mathrm{r}$ be the common ratio of the G.P.
$
\begin{aligned}
\therefore S & =a+a r+a r^2+\ldots+a r^{n-1} \\
& =\frac{a\left(1-r^n\right)}{1-r} \\
P & =a \times a r \times a r^2 \times \ldots \times a r^{n-1}=a^n r^{1+2+3 \ldots+(n-1)}=a^n r^{n(n-1) / 2} \\
\therefore P^2 & =a^{2 n} r^{n(n-1)} \\
R & =\frac{1}{a}+\frac{1}{a r}+\frac{1}{a r^2}+\ldots+\frac{1}{a r^{n-1}} \\
\Rightarrow R & =\frac{1}{a} \cdot \frac{\left(1-\frac{1}{r^n}\right)}{\left(1-\frac{1}{r}\right)}=\frac{\left(r^n-1\right)}{(r-1)} \cdot \frac{1}{a r^{n-1}}[\because \text { Here, } r<1] \\
\therefore \frac{S}{R} & =a \frac{\left(1-r^n\right)}{1-r} \cdot \frac{r-1}{r^n-1} a r^{n-1}=a^2 r^{(n-1)}
\end{aligned}
$