Exercise 5.5 - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions
Updated On 26-08-2025 By Lithanya
You can Download the Exercise 5.5 - Chapter 5 - Binomial Theorem, Sequences and Series - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Ex 5.5
Choose the correct or the most suitable answer:
Question 1.
The value of $2+4+6+\ldots+2 \mathrm{n}$ is ....
(a) $\frac{n(n-1)}{2}$
(b) $\frac{n(n+1)}{2}$
(c) $\frac{2 n(2 n+1)}{2}$
(d) $n(n+1)$
Solution:
(d) $n(n+1)$
Hint $.2+4+6+\ldots+2 n=2(1+2+3+\ldots n)=2\left[\frac{n(n+1)}{2}\right]=n(n+1)$
Question 2.
The coefficient of $x^6$ in $(2+2 x)^{10}$ is
(a) ${ }^{10} \mathrm{C}_6$
(b) $2^6$
(c) ${ }^{10} \mathrm{C}_6 2^6$
(d) ${ }^{10} \mathrm{C}_6 2^{10}$
Solution:
(d) ${ }^{10} \mathrm{C}_6 2^{10}$
Hint.
$\mathrm{t}_{\mathrm{r}+1}=2^{10}\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}\right)$
To find coefficient of $\mathrm{x}_6$ put $\mathrm{r}=6$
$\therefore$ coefficient of $\mathrm{x}_6=210\left[{ }^{10} \mathrm{C}_6\right]$
Question 3.
The coefficient of $x^8 y^{12}$ in the expansion of $(2 x+3 y)^{20}$ is
(a) 0
(b) $2^8 3^{12}$
(c) $2^8 3^{12}+2^{12} 3^8$
(d) ${ }^{20} \mathrm{C}_8 2^8 3^{12}$
Solution:
(d) ${ }^{20} \mathrm{C}_8 2^8 3^{12}$
Hint. $t_{r+1}={ }^{20} \mathrm{C}_r(2 x)^{20-r}(3 y)^r={ }^{20} \mathrm{C}_r 2^{20-r}(x)^{20-r} 3^r y^r \quad\left[{ }^n \mathrm{C}_r={ }^n \mathrm{C}_{n-r}\right]$
To find coefficient of $x^8$ put $20-r=8 \Rightarrow r=12$
To find coefficient of $y^{12}$ put $r=12 \therefore r=12$
Coefficient $={ }^{20} \mathrm{C}_{12}(2)^{20-12} 3^{12}={ }^{20} \mathrm{C}_{12} 2^8 3^{12}={ }^{20} \mathrm{C}_8 2^8 3^{12}$
Question 4.
If ${ }^n C_{10}>{ }^n C_r$ for all possible $r$, then a value of $n$ is
(a) 10
(b) 21
(c) 19
(d) 20
Solution:
(d) 20
Hint.
Out of ${ }^{10} \mathrm{C}_{10},{ }^{21} \mathrm{C}_{10},{ }^{19} \mathrm{C}_{10}$ and ${ }^{20} \mathrm{C}_{10},{ }^{20} \mathrm{C}_{10}$ is larger.
Question 5.
If $a$ is the arithmetic mean and $g$ is the geometric mean of two numbers, then
(a) $\mathrm{a} \leq \mathrm{g}$
(b) $a \geq g$
(c) $\mathrm{a}=\mathrm{g}$
(d) $a>g$
Solution:
(b) $\mathrm{a} \geq \mathrm{g}$
Hint. AM $\geq \mathrm{GM}$
$\therefore \mathrm{a} \geq \mathrm{g}$
Question 6.
If $\left(1+x^2\right)^2(1+x)^n=a_0+a_1 x+a_2 x^2+\ldots . .+x^{n+4}$ and if $a_0, a_1, a_2$ are in AP, then $n$ is .....
(a) 1
(b) 2
(c) 3
(d) 4
Solution:
(b or $\mathrm{c}) \mathrm{n}=2$ or 3
Hint. $\begin{aligned} &\left(1+x^2\right)^2(1+x)^n=\left(1+2 x^2+x^4\right)\left(1+n x+\frac{n(n-1)}{2} x^2 \ldots\right) \\ &=1+n x+\frac{n(n-1)}{2} x^2+2 x^2 \ldots=a_0+a_1 x+a_2 x^2+\ldots \text { (given) } \\ & \quad \text {} \\ & \Rightarrow a_0=1, a_1=n, a_2=\frac{n(n-1)}{2}+2(\text { i.e }) a_2=\frac{n^2-n+4}{2}\end{aligned}$
Given $a_0, a_1, a_2$ are in A.P.
$
\begin{aligned}
& 2 a_1=a_0+a_2 \Rightarrow 2 n=1+\frac{n^2-n+4}{2} \\
& \Rightarrow 2 n=\frac{n^2-n+6}{2} \Rightarrow n^2-n+6=4 n \\
& \text { (i.e) } n^2-5 n+6=0 \Rightarrow n=2 \text { or } 3
\end{aligned}
$
Question 7.
If $\mathrm{a}, 8, \mathrm{~b}$ are in A.P, a, 4, b are in G.P, if $\mathrm{a}, \mathrm{x}, \mathrm{b}$ are in HP then $\mathrm{x}$ is .....
(a) 2
(b) 1
(c) 4
(d) 16
Solution:
(a) 2
Hint: $a, 8, b$ are in AP $\Rightarrow \frac{a+b}{2}=8 \Rightarrow a+b=16$
$a, 4, b$ are in $\mathrm{GP} \Rightarrow a b=4^2=16$
Now $a, x, b$ are in HP $\Rightarrow x=\frac{2 a b}{a+b}=\frac{2(16)}{16}=2$
Question 8 .
The sequence $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}+\sqrt{2}}, \frac{1}{\sqrt{3}+2 \sqrt{2}} \ldots$ form an
(a) AP
(b) GP
(c) $\mathrm{HP}$
(d) AGP
Solution:
(c) $\mathrm{HP}$
Question 9.
The $\mathrm{HM}$ of two positive numbers whose $\mathrm{AM}$ and $\mathrm{GM}$ are 16,8 respectively is
(a) 10
(b) 6
(c) 5
(d) 4
Solution:
(d) 4
Hint
Let the two numbers be $\mathrm{a}$ and $\mathrm{b}$
$
\begin{aligned}
& \mathrm{AM}=\frac{a+b}{2}=16 \Rightarrow a+b=32 \\
& \mathrm{GM}=\sqrt{a b}=8 \Rightarrow a b=64 \\
& \mathrm{HM}=\frac{2 a b}{a+b}=\frac{2 \times 64}{32}=4
\end{aligned}
$
Question 10 .
If $S_n$ denotes the sum of $n$ terms of an $A P$ whose common difference is $d$, the value of $\mathrm{S}_n-2 \mathrm{~S}_{n-1}+S_{n-2}$ is $\ldots \ldots$
(a) $\mathrm{d}$
(b) $2 \mathrm{~d}$
(c) $4 \mathrm{~d}$
(d) $\mathrm{d}^2$
Solution:
(a) d
Hint. $\begin{aligned} S_n-2 S_{n-1}+S_{n-2} & =S_n-S_{n-1}-S_{n-1}+S_{n-2} \\ & =\left(S_n-S_{n-1}\right)-\left(S_{n-1}-S_{n-2}\right)\end{aligned}$
Now $S_n=t_1+t_2+\ldots t_n$
$S_{n-1}=t_1+t_2+\ldots t_{n-1}$ and $S_{n-2}=t_1+t_2+\ldots t_{n-2}$
So $S_n-S_{n-1}=t_n$ and $S_{n-1}-S_{n-2}=t_{n-1}$
Now $\left(S_n-S_{n-1}\right)-\left(S_{n-1}-S_{n-2}\right)=t_n-t_{n-1}$
$=[a+(n-1) d]-[a+(n-1-1) d]$
$=a+n d-d-a-n d+2 d=d$
Question 11.
The remainder when $38^{15}$ is divided by 13 is ......
(a) 12
(b) 1
(c) 11
(d) 5
Solution:
(a) 12
Hint
$
\begin{aligned}
& 38^{15}=(39-1)^{15}=39^{15}-15 \mathrm{C}_1 39^{14}(1)+15 \mathrm{C}_2(39)^{13}(1)^2-15 \mathrm{C}_3(39)^{12}(1)^3 \ldots .+15 \mathrm{C}_{14}(39)^1(1)- \\
& 15 \mathrm{C}_{15}(1)
\end{aligned}
$
Except -1 all other terms are divisible by 13 .
$\therefore$ When 1 is added to it the number is divisible by 13 . So the remainder is $13-1=12$.
Question 12 .
The $\mathrm{n}^{\text {th }}$ term of the sequence $1,2,4,7,11, \ldots \ldots$ is
(a) $n^3+3 n^2+2 n$
(b) $n^3-3 n^2+3 n$
(c) $\frac{n(n+1)(n+2)}{3}$
(d) $\frac{n^2-n+2}{2}$
Solution:
(d) $\frac{n^2-n+2}{2}$
Question 13.
The sum up to $n$ terms of the series $\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\ldots$ is
(a) $\sqrt{2 n+1}$
(b) $\frac{\sqrt{2 n+1}}{2}$
(c) $\sqrt{2 n+1}-1$
(d) $\frac{\sqrt{2 n+1}-1}{2}$
Solution:
(d) $\frac{\sqrt{2 n+1-1}}{2}$
Hint. $\frac{1}{\sqrt{3}+1}=\frac{1}{\sqrt{3}+\sqrt{1}} \times \frac{\sqrt{3}-\sqrt{1}}{\sqrt{3}-1}=\frac{\sqrt{3}-1}{3-1}=\frac{\sqrt{3}-\sqrt{1}}{2}$
$
\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{1}{\sqrt{5}+\sqrt{3}} \times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{5}-\sqrt{3}}{5-3}=\frac{\sqrt{5}-\sqrt{3}}{2}
$
So $\frac{1}{\sqrt{3}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\ldots=\frac{\sqrt{3}-\sqrt{1}}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+\ldots .\left(\frac{\sqrt{2 n+1}-\sqrt{2 n+1}}{2}\right)$ $=\frac{\sqrt{2 n+1}-1}{2}$
Question 14.
The $n^{\text {th }}$ term of the sequence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}$ is
(a) $2^n-n-1$
(b) $1-2^{-n}$
(c) $2^{-n}+n-1$
(d) $2^{n-1}$
Solution:
$
\text { Hint. } \begin{aligned}
& t_1=\frac{1}{2}=1-\frac{1}{2} ; t_2=\frac{3}{4}=1-\frac{1}{4}=1-\frac{1}{2^2}, t_3=\frac{7}{8}=1-\frac{1}{8}=1-\frac{1}{2^3} \\
& \therefore t_n=1-\frac{1}{2^n}=1-2^{-n}
\end{aligned}
$
Question 15 .
The sum up to $n$ terms of the series $\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+$ is
(a) $\frac{n(n+1)}{2}$
(b) $2 n(n+1)$
(c) $\frac{n(n+1)}{\sqrt{2}}$
(d) 1
Solution:
(c) $\frac{n(n+1)}{\sqrt{2}}$
Hint. $\sqrt{2}+2 \sqrt{2}+3 \sqrt{2}+\ldots n$ terms
$
=\sqrt{2}(1+2+3+\ldots n)=\sqrt{2} \frac{(n)(n+1)}{2}=\frac{n(n+1)}{\sqrt{2}}
$
Question 16.
The value of the series $\frac{1}{2}+\frac{7}{4}+\frac{13}{8}+\frac{19}{16}+\ldots$ is
(a) 14
(b) 7
(c) 4
(d) 6
Solution:
(a) 14
Hint. $\frac{1}{2}+\frac{7}{4}+\frac{13}{8}+\frac{19}{16}+$
It is an arithmetico geometric series
Here $a=1, d=7-1=6$, and $r=\frac{1}{2}$
$
S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^2}=\frac{1}{1-1 / 2}+\frac{(6)(1 / 2)}{(1-1 / 2)^2}=\frac{1}{1 / 2}+\frac{3}{(1 / 2)^2}=2+(3 \times 4)=2+12=14
$
Question 17.
The sum of an infinite GP is 18 . If the first term is 6 , the common ratio is .......
(a) $\frac{1}{3}$
(b) $\frac{2}{3}$
(c) $\frac{1}{6}$
(d) $\frac{3}{4}$
Solution:
(b) $\frac{2}{3}$
Hint:
$
\begin{aligned}
& \frac{6}{1-r}=18 \Rightarrow 6=18-18 r \\
& 18 r=18-6=12 \\
& r=12 / 18=2 / 3
\end{aligned}
$
Question 18.
The coefficient of $\mathrm{x}^5$ in the series $\mathrm{e}^{-2 \mathrm{x}}$ is .......
(a) $\frac{2}{3}$
(b) $\frac{3}{2}$
(c) $\frac{-4}{15}$
(d) $\frac{4}{15}$
Answer:
(c) $\frac{-4}{15}$
Hint. $e^{-2 x}=1-\frac{2 x}{\angle 1}+\frac{(2 x)^2}{\angle 2}-\frac{(2 x)^3}{\angle 3}+\frac{(2 x)^4}{\angle 4}-\frac{(2 x)^5}{\angle 5} \cdots$
Coefficient of $x^5=\frac{-2^5}{\angle 5}=\frac{-32}{120}=\frac{-4}{15}$
Question 19.
The value of $\frac{1}{2 !},+\frac{1}{4 !}+\frac{1}{6 !}+\ldots \ldots .$. is
Answer:
(c) $\frac{(e-1)^2}{2 e}$
Hint. $e^1=1+\frac{1}{1 !}+\frac{1}{2 !}+\frac{1}{3 !} \cdots, e^{-1}=1-\frac{1}{1 !}+\frac{1}{2 !}-\frac{1}{3 !} \ldots$
$
\begin{aligned}
& \frac{e^1+e^{-1}}{2}=1+\frac{1}{2 !}+\frac{1}{4 !}+\ldots . \\
& \frac{1}{2 !}+\frac{1}{4 !}+\ldots=\frac{e^e+e^{-1}}{2}-1 \\
& =\frac{e^1-2+e^{-1}}{2}=\frac{(e-1)^2}{2}
\end{aligned}
$
Question 20.
The value of $1-\frac{1}{2}\left(\frac{2}{3}\right)+\frac{1}{3}\left(\frac{2}{3}\right)^2-\frac{1}{4}\left(\frac{2}{3}\right)^3+\ldots$ is
(a) $\log \left(\frac{5}{3}\right)$
(b) $\frac{3}{2} \log \left(\frac{5}{3}\right)$
(c) $\frac{5}{3} \log \left(\frac{5}{3}\right)$
(d) $\frac{2}{3} \log \left(\frac{2}{3}\right)$
Solution:
(b) $\frac{3}{2} \log \left(\frac{5}{3}\right)$
$
\text { Hint. } \begin{aligned}
\log (1+x) & =x-\frac{x^2}{2}+\frac{x^3}{3}+\ldots \\
\log \frac{(1+x)}{x} & =1-\frac{x}{2}+\frac{x^2}{3}-\frac{x^3}{4}+\ldots \\
\text { put } x=2 / 3 & =1-\frac{(2 / 3)}{2}+\frac{(2 / 3)^2}{3}-\frac{(2 / 3)^3}{4}+\ldots \\
& =\log (1+2 / 3) / 2 / 3 \\
& =\frac{3}{2} \log (1+2 / 3)=\frac{3}{2} \log \frac{5}{3}
\end{aligned}
$