WELCOME TO SaraNextGen.Com

Exercise 6.1-Additional Questions - Chapter 6 - Two Dimensional Analytical Geometry - 11th Maths Guide Samacheer Kalvi Solutions

Updated On 26-08-2025 By Lithanya


You can Download the Exercise 6.1-Additional Questions - Chapter 6 - Two Dimensional Analytical Geometry - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends

Additional Questions
Question 1.

If the sum of the distance of a moving point in a plane from the axis is 1 , then find the locus of the point. Solution:
Let coordinates of a moving point $\mathrm{P}$ be $(\mathrm{x}, \mathrm{y})$.
Given that the sum of the distances from the axis to the point is always 1 .

$
\begin{aligned}
& \therefore|\mathrm{x}|+|\mathrm{y}|=1 \Rightarrow \mathrm{x}+\mathrm{y}=1 \\
& \Rightarrow-\mathrm{x}-\mathrm{y}=1 \Rightarrow \mathrm{x}-\mathrm{y}=1
\end{aligned}
$
Hence, these equations give us the locus of the point $\mathrm{P}$ which is a square.
Question 2.
A point moves so that square of its distance from the point $(3,-2)$ is numerically equal to its distance from the line $5 x-12 y=3$. The equation of its locus is
Solution:
The given equation of line is $5 x-12 y=3$ and the given point is $(3,-2)$.
Let $(a, b)$ be any moving point.
$\therefore$ Distance between $(a, b)$ and the point $(3,-2)=\sqrt{(a-3)^2+(b+2)^2}$ and the distance 0 $(a, b)$ from the line $5 x-12 y=3$ is $\left|\frac{5 a-12 b-3}{\sqrt{25+144}}\right|=\left|\frac{5 a-12 b-3}{13}\right|$
According to the question, we have $\left[\sqrt{(a-3)^2+(b+2)^2}\right]^2=\left|\frac{5 a-12 b-3}{13}\right|$
$
\Rightarrow(a-3)^2+(b+2)^2=\frac{5 a-12 b-3}{13}
$
Taking numerical values only, we have $(a-3)^2+(b+2)^2=\frac{5 a-12 b-3}{13}$
$
\begin{aligned}
& \Rightarrow a^2-6 a+9+b^2+4 b+4=\frac{5 a-12 b-3}{13} \\
& \Rightarrow a^2+b^2-6 a+4 b+13=\frac{5 a-12 b-3}{13} \\
& \Rightarrow 13 a^2+13 b^2-78 a+52 b+169=5 a-12 b-3 \\
& \Rightarrow 13 a^2+13 b^2-83 a+64 b+172=0
\end{aligned}
$
So, the locus of the point is $13 x^2+13 y^2-83 x+64 y+172=0$
Question 3.
Find the Locus of the mid points of the portion of the line $x \cos \theta+\mathrm{y} \sin \theta=p$ intercepted between the axis.
Solution:
Given equation of the line is $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=\mathrm{p}$.. (i)
Let $C(h, k)$ be the mid point of the given line $A B$ where it meets the two axis at $A(a, 0)$ and $B(0, b)$.
Since $(a, 0)$ lies on eq (i) then "a $\cos \theta+\theta=p$ "
$
\Rightarrow a=\frac{p}{\cos \theta}
$

$B(0, b)$ also lies on the eq (i) then $0+\mathrm{b} \sin \theta=\mathrm{p}$
$
\Rightarrow b=\frac{p}{\sin \theta}
$
Since $C(h, k)$ is the mid point of $A B$
$
\therefore h=\frac{0+a}{2} \Rightarrow a=2 h \text { and } k=\frac{b+0}{2} \Rightarrow b=2 k
$
Putting the values of $a$ and $b$ is eq (ii) and (iii) we get $P$
$
2 h=\frac{p}{\cos \theta} \Rightarrow \cos \theta=\frac{p}{2 h}
$
and $2 k=\frac{p}{\sin \theta} \Rightarrow \sin \theta=\frac{p}{2 k}$
Squaring and adding eq (iv) and (v) we get
$
\Rightarrow \cos ^2 \theta+\sin ^2 \theta=\frac{p^2}{4 h^2}+\frac{p^2}{4 k^2} \Rightarrow 1=\frac{p^2}{4 h^2}+\frac{p^2}{4 k^2}
$
So, the locus of the mid point is $1=\frac{p^2}{4 x^2}+\frac{p^2}{4 y^2}$
$
\Rightarrow 4 x^2 y^2=p^2\left(x^2+y^2\right)
$
Question 4.
Show that the locus of the mid-point of the segment intercepted between the axes of th variable line $x \cos \alpha+y \sin \alpha=p$ is $\frac{1}{x^2}+\frac{1}{y^2}=\frac{4}{p^2}$ where $p$ is a constant.

Solution:
The given equation is $x \cos \alpha+y \sin \alpha=p$ or, $\frac{x}{p / \cos \alpha}+\frac{y}{p / \sin \alpha}=1$
This cuts the coordinate axes at $\mathrm{A}(p / \cos \alpha, 0)$ and $\mathrm{B}(0, p / \sin \alpha)$. Let $\mathrm{P}(h, k)$ be the $\mathrm{n}$ point of the intercept $\mathrm{AB}$. Then,

$\begin{aligned}
& h=\frac{p / \cos \alpha+0}{2}, k=\frac{0+p / \sin \alpha}{2} \\
& \Rightarrow h=\frac{p}{2 \cos \alpha}, k=\frac{p}{2 \sin \alpha} \\
& \Rightarrow \cos \alpha=\frac{p}{2 h}, \sin \alpha=\frac{p}{2 k} \ldots(i)
\end{aligned}$

Here, $\alpha$ is a variable. To find the locus of $\mathrm{P}(\mathrm{h}, \mathrm{k})$, we have to eliminate $\alpha$. From (i), we obtain
$
\cos ^2 \alpha+\sin ^2 \alpha=\frac{p^2}{4 h^2}+\frac{p^2}{4 k^2} \Rightarrow 1=\frac{p^2}{4 h^2}+\frac{p^2}{4 k^2} \Rightarrow \frac{4}{p^2}=\frac{1}{h^2}+\frac{1}{k^2}
$
Hence, the locus of $(h, k)$ is $\frac{1}{x^2}+\frac{1}{y^2}=\frac{4}{p^2}$
Question 5.
The line $\frac{x}{a}+\frac{y}{b}=1$ moves in such a way that $\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{c^2}$, where $c$ is a constant. Fint the locus of the foot of the perpendicular from the origin on the given line.
Solution:

Let $\mathrm{P}(h, k)$ be the foot of the perpendicular from the origin $\mathrm{O}$ on the line $\frac{x}{a}+\frac{y}{b}=1$ which cuts the coordinates axes at $\mathrm{A}(a, 0)$ and $\mathrm{B}(0, b)$. Then,
Slope of OP $\times$ Slope of AB $=-1$

$
\begin{aligned}
& \Rightarrow \frac{k-0}{h-0} \times \frac{b-0}{0-a}=-1 \\
& \Rightarrow b k=a h \\
& \Rightarrow b=\frac{a h}{k}
\end{aligned}
$
Also $\mathrm{P}(h, k)$ lies on $\frac{x}{a}+\frac{y}{b}=1$
$
\begin{aligned}
& \therefore \frac{h}{a}+\frac{k}{b}=1 \\
& \left.\Rightarrow \frac{h}{a}+\frac{k^2}{a h}=1 \quad \text { [Using }(i)\right] \\
& \Rightarrow a=\frac{h^2+k^2}{h}
\end{aligned}
$

Substituting this values of $a$ in $(i)$, we obtain
$
b=\frac{h^2+k^2}{k}
$
Substituting this values of $a$ and $b$ in $\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{c^2}$, we obtain $\frac{h^2}{\left(h^2+k^2\right)^2}+\frac{k^2}{\left(h^2+k^2\right)^2}=\frac{1}{c^2}$ or $h^2+k^2=c^2$
Hence, the locus of $(h, k)$ is $x^2+y^2=c^2$