Exercise 6.3 - Chapter 6 - Two Dimensional Analytical Geometry - 11th Maths Guide Samacheer Kalvi Solutions
Updated On 26-08-2025 By Lithanya
You can Download the Exercise 6.3 - Chapter 6 - Two Dimensional Analytical Geometry - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Ex 6.3
Question 1.
Show that the lines are $3 x+2 y+9=0$ and $12 x+8 y-15=0$ are parallel lines.
Solution:
Slope of $\mathrm{I}$ line $=m_1=-\left(\frac{3}{2}\right)=\frac{-3}{2}$
Slope of II line $=m_2=-\left(\frac{12}{8}\right)=\frac{-3}{2}$
Here $\mathrm{m}_1=\mathrm{m}_2 \Rightarrow$ the two lines are parallel.
Question 2.
Find the equation of the straight line parallel to $5 x-4 y+3=0$ and having $x-$ intercept 3 .
Solution:
Equation of a line parallel to $a x+b y+c=0$ will be of the form $a x+b y+k=0$
So equation of a line parallel to $5 x-4 y+3=0$ will be of the form $5 x-4 y=k$
$\Rightarrow \frac{5 x}{k}-\frac{4 y}{k}=1$
(i.e) $\frac{x}{k / 5}+\frac{y}{k /-4}=1$
Here we are given that $x$ intercept $=-3 \Rightarrow \frac{k}{5}=-3 \Rightarrow k=-15$
So equation of the line is $\frac{x}{-3}+\frac{y}{-15 /-4}=1$
(i.e) $\frac{-x}{3}+\frac{4 y}{15}=1 \Rightarrow \frac{-5 x+4 y}{15}=1$
$-5 x+4 y=15 \Rightarrow 5 x-4 y-15=0$
Question 3.
Find the distance between the line $4 x+3 y+4=0$ and a point
(i) $(-2,4)$
(ii) $(7,-3)$
Solution:
The distance between the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and the point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is given by
$
\pm \frac{a x_1+b y_1+c}{\sqrt{a^2+b^2}}
$
(i) Now the distance between the line $4 x+3 y+4=0$ and $(-2,4)$ is $\pm \frac{4(-2)+3(4)+4}{\sqrt{4^2+3^2}}=\frac{-8+12+4}{5}=8 / 5$ units
(ii) The distance between the line $4 x+3 y+4=0$ and $(7,-3)$ is $\pm \frac{4(7)+3(-3)+4}{\sqrt{4^2+3^2}}=\frac{28-9+4}{5}=\frac{23}{5}$ units
Question 4.
Write the equation of the lines through the point $(1,-1)$
(i) Parallel to $x+3 y-4=0$
(ii) Perpendicular to $3 x+4 y=6$
Solution:
(i) Any line parallel to $x+3 y-4=0$ will be of the form $x+3 y+k=0$.
It passes through $(1,-1) \Rightarrow 1-3+\mathrm{k}=0 \Rightarrow \mathrm{k}=2$
So the required line is $x+3 y+2=0$
(ii) Any line perpendicular to $3 x+4 y-6=0$ will be of the form $4 x-3 y+k=0$.
It passes through $(1,-1) \Rightarrow 4+3+\mathrm{k}=0 \Rightarrow \mathrm{k}=-7$.
So the required line is $4 x-3 y-7=0$
Question 5.
If $(-4,7)$ is one vertex of a rhombus and if the equation of one diagonal is $5 x-y+7=0$, then find the equation of another diagonal.
Solution:
In a rhombus, the diagonal cut at right angles.
The given diagonal is $5 x-y+7=0$ and $(-4,7)$ is not a point on the diagonal.
So it will be a point on the other diagonal which is perpendicular to $5 x-y+7=0$.
The equation of a line perpendicular to $5 x-y+7=0$ will be of the form $x+5 y+k=0$. It passes through $(-4,7) \Rightarrow-4+5(7)+\mathrm{k}=0 \Rightarrow \mathrm{k}=-31$
So the equation of the other diagonal is $x+5 y-31=0$
Question 6.
Find the equation of the lines passing through the point of intersection lines $4 x-y+3=0$ and $5 x+2 y$ $+7=0$, and
(i) Through the point $(-1,2)$
(ii) Parallel to $\mathrm{x}-\mathrm{y}+5=0$
(iii) Perpendicular to $x-2 y+1=0$.
Solution:
To find the point of intersection of the lines we have to solve them
Substituting $x=-1$ in equation (2) we get
$
\begin{aligned}
& -5+2 y=-7 \\
& \Rightarrow 2 y=-7+5=-2 \\
& \Rightarrow y=-1
\end{aligned}
$
So the point of intersection is $(-1,-1)$
(i) $\operatorname{Now}\left(x_1, y_1\right)=(-1,-1) ;\left(x_2, y_2\right)=(-1,2)$.
Equation of the line passing through 2 points is $\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$
(i.e) $\frac{y+1}{2+1}=\frac{x+1}{-1+1} \Rightarrow \frac{y+1}{3}=\frac{x+1}{0} \Rightarrow x+1=0 \Rightarrow x=-1$
(ii) Equation of a line parallel to $x-y+5=0$ will be of the form $x-y+k=0$.
It passes through $(-1,-1) \Rightarrow-1+1+\mathrm{k}=0 \Rightarrow \mathrm{k}=0$.
So the required line is $x-y=0 \Rightarrow x=y$.
(iii) Equation of a line perpendicular to $x-2 y+1=0$ will be of the form $2 x+y+k=0$. It passes through $(-1,-1) \Rightarrow-2-1+\mathrm{k}=0 \Rightarrow \mathrm{k}=3$.
So the required line is $2 x+y+3=0$
Question 7.
Find the equations of two straight lines which are parallel to the line $12 x+5 y+2=0$ and at a unit distance from the point $(1,-1)$.
Solution:
Equation of a line parallel to $12 \mathrm{x}+5 \mathrm{y}+2=0$ will be of the form $12 \mathrm{x}+5 \mathrm{y}+\mathrm{k}=0$.
We are given that the perpendicular distance form $(1,-1)$ to the line $12 \mathrm{x}+5 \mathrm{y}+\mathrm{k}=0$ is 1 unit.
$
\begin{aligned}
& \Rightarrow \pm \frac{12(1)+5(-1)+k}{\sqrt{12^2+5^2}}=1(\text { i.e }) \frac{12-5+k}{13}= \pm 1 \Rightarrow 7+k= \pm 13 \\
& 7+k=13 \quad \begin{array}{c}
7+k=-13
\end{array} \\
& \Rightarrow k=13-7=6 \mid \Rightarrow k=-13-7=-20
\end{aligned}
$
So the required line will be $12 x+5 y+6=0$ or $12 x+5 y-20=0$
Question 8.
Find the equations of straight lines which are perpendicular to the line $3 x+4 y-6=0$ and are at a distance of 4 units from $(2,1)$.
Solution:
Given equation of line is $3 x+4 y-6=0$.
Any line perpendicular to $3 x+4 y-6=0$ will be of the form $4 x-3 y+k=0$
Given perpendicular distance is 4 units from $(2,1)$ to line (1)
$
\begin{aligned}
& \therefore 4= \pm \frac{(4(2)-3(1)+k)}{\sqrt{4^2+(-3)^2}} \\
& \Rightarrow \quad 4= \pm \frac{(8-3+k)}{\sqrt{16+9}} \\
& \Rightarrow \quad 4= \pm\left(\frac{5+k}{5}\right) \\
& \therefore 20=+(5+\mathrm{k}) \text { or } 20=-(5+\mathrm{k}) \\
& \Rightarrow \mathrm{k}=20-5 \text { or } \mathrm{k}=-(20+5) \\
& \mathrm{k}=15 \text { or } \mathrm{k}:=-25 \\
& \therefore \text { Required equation of the lines are } 4 \mathrm{x}-3 \mathrm{y}+15=0 \text { and } 4 \mathrm{x}-3 \mathrm{y}-25=0
\end{aligned}
$
Question 9.
Find the equation of a straight line parallel to $2 x+3 y=10$ and which is such that the sum of its intercepts on the axes is 15 .
Solution:
The equation of the line parallel to $2 x+3 y=10$ will be of the form $2 x+3 y=k$.
(i.e) $\frac{2 x}{k}+\frac{3 y}{k}=1 \Rightarrow \frac{x}{k / 2}+\frac{y}{k / 3}=1$.
Sum of the intercepts $=15 \Rightarrow \frac{k}{2}+\frac{k}{3}=15 \Rightarrow \frac{3 k+2 k}{6}=15$
$5 k=90 \Rightarrow k=90 / 5=18$.
So the required line is $2 x+3 y=18$ or $2 x+3 y-18=0$
Question 10.
Find the length of the perpendicular and the co-ordinates of the foot of the perpendicular from $(-10,-2)$ to the line $\mathrm{x}+\mathrm{y}-2=0$.
Solution:
Length of the perpendicular from $(-10,-2)$ to $x+y-2=0$ is $\pm\left(\frac{-10-2-2}{\sqrt{1^2+1^2}}\right)= \pm \frac{14}{\sqrt{2}}=\frac{14 \sqrt{2}}{\sqrt{2} \sqrt{2}}=7 \sqrt{2}$ units
Let $\mathrm{A}(a, b)$ be the foot of the perpendicular the given line is $x+y-2=0 \Rightarrow a+b-2=0$ $\Rightarrow a+b=2$
So of line joining A $(a, b)$ and $\mathrm{B}(-10,-2)$ is $\frac{b+2}{a+10}=m_1$.
Slope of $x+y-2=0$ is $\frac{-1}{1}=-1=m_2$
We are given $m_1 m_2=-1$
$
\Rightarrow\left(\frac{b+2}{a+10}\right)(-1)=-1 \Rightarrow \frac{b+2}{a+10}=1 \Rightarrow b+2=a+10
$
Solving (1) and (2) $\Rightarrow a-b=-8$
(1) $\Rightarrow a+b=2$
(2) $\Rightarrow \frac{a-b=-8}{2 a=-6}$
$a=-3$
Substituting $a=-3$ in (1) we get $-3+b=2 \Rightarrow b=2+3=5$
So the foot of the perpendicular is $(-3,5)$
Question 11.
If $\mathrm{p}_1$ and $\mathrm{p}_2$ are the lengths of the perpendiculars from the origin to the straight lines. $\sec \theta+\mathrm{y} \operatorname{cosec} \theta=$ $2 \mathrm{a}$ and $\mathrm{x} \cos \theta-\mathrm{y} \sin \theta=\mathrm{a} \cos 2 \theta$, then prove that $\mathrm{p}_{-}\{1\}^{\wedge}\{2\}+\mathrm{p}_{-}\{2\}^{\wedge}\{2\}=\mathrm{a}^{\wedge}\{2\}$
Solution:
$\mathrm{p}_1=$ length of perpendicular from $(0,0)$ to $\mathrm{x} \sec \theta+\mathrm{y} \operatorname{cosec} \theta=2 \mathrm{a}$
$
\begin{aligned}
& \Rightarrow p_1= \pm \frac{2 a}{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}} \\
& \therefore p_1^2=\frac{4 a^2}{\sec ^2 \theta+\operatorname{cosec}^2 \theta}=\frac{4 a^2}{\frac{1}{\cos ^2 \theta}+\frac{1}{\sin ^2 \theta}} \\
& =\frac{4 a^2 \cos ^2 \theta \sin ^2 \theta}{\sin ^2 \theta+\cos ^2 \theta}=(2 a \sin \theta \cos \theta)^2 \\
& =a^2[2 \sin \theta \cos \theta]^2=a^2(\sin 2 \theta)^2=a^2 \sin ^2 2 \theta \\
& p_2=\text { length of perpendicular from }(0,0) \text { to } x \cos \theta-y \sin \theta=a \cos 2 \theta \\
& p_2= \pm \frac{a \cos 2 \theta}{\sqrt{\cos ^2 \theta+\sin ^2 \theta}}=a \cos 2 \theta \\
& \therefore p_2^2=(a \cos 2 \theta)^2=a^2 \cos ^2 2 \theta \\
& \text { LHS }=p_1^2+p_2^2=a^2 \sin ^2 2 \theta+a^2 \cos ^2 2 \theta=a^2\left[\sin ^2 2 \theta+\cos ^2 2 \theta\right]=a^2(1)=a^2=\text { RHS } \\
&
\end{aligned}
$
Question 12.
Find the distance between the parallel lines
(i) $12 x+5 y=7$ and $12 x+5 y+7=0$
(ii) $3 x-4 y+5=0$ and $6 x-8 y-15=0$.
Solution:
(i) The distance between the parallel lines $a x+b y+c=0$ and $a x+b y+d=0$ is $\pm \frac{c-d}{\sqrt{a^2+b^2}}$ The distance between $12 x+5 y-7=0$ and $12 x+5 y+7=0$ is $\pm 7-(-7) / \sqrt{12^2+5^2}=\frac{14}{13}$ units.
(ii) $3 x-4 y+5=0$ (multiplying by 2 ) $6 x-8 y+10=0,6 x-8 y-15=0$.
The distance between the parallel lines is $\pm \frac{10-(-15)}{\sqrt{6^2+8^2}}=\frac{10+15}{\sqrt{36+64}}=\frac{25}{10}=\frac{5}{2}$ units
Question 13.
Find the family of straight lines
(i) Perpendicular
(ii) Parallel to $3 x+4 y-12=0$.
Solution:
Equation of lines perpendicular to $3 x+4 y-12=0$ will be of the form $4 x-3 y+k=0, k \in R$ Equation of lines parallel to $3 x+4 y-12=0$ will be of the form $3 x+4 y+k=0, k \in R$
Question 14.
If the line joining two points $\mathrm{A}(2,0)$ and $\mathrm{B}(3,1)$ is rotated about $\mathrm{A}$ in anti-clockwise direction through an angle of $15^{\circ}$, then find the equation of the line in new position.
Solution:
Slope of $\mathrm{A}(2,0)$ and $\mathrm{B}(3,1)$ is $m=\frac{1-0}{3-2}=\frac{1}{1}=1$
(i.e) $\tan \theta=1 \Rightarrow \theta=45^{\circ}$.
This line is rotated about $15^{\circ}$ in anti clockwise direction
$\Rightarrow$ New slope $=\tan \left(45^{\circ}+15^{\circ}\right)=\tan 60^{\circ}=\sqrt{3}$ (i.e) $\mathrm{m}=\sqrt{3}$.
Point $\mathrm{A}=(2,0)$
Equation of the line is $y-0=\sqrt{3}(x-2)$
$
y=\sqrt{3} x-2 \sqrt{3} \Rightarrow \sqrt{3} x-y-2 \sqrt{3}=0
$
Question 15.
A ray of light coming from the point $(1,2)$ is reflected at a point $\mathrm{A}$ on the $\mathrm{x}$-axis and it passes through the point $(5,3)$. Find the co-ordinates of the point A.
Solution:
The image of the point $P(1,2)$ will be $P^{\prime}(1,-2)$.
Since $\angle \mathrm{OAP}=\angle \mathrm{XAQ}$ (angle of inches $=$ angle of reflection) So $\angle \mathrm{OAP}^{\prime}=\angle \mathrm{XAQ}=$ a (Vertically opposite angles)
$\Rightarrow \mathrm{P}, \mathrm{A}, \mathrm{Q}$ lie on a same line.
Now equation of the line $\mathrm{P}^{\prime}, \mathrm{Q}$ is [where $\left.\mathrm{P}^{\prime}=(1,-2), \mathrm{Q}=(5,3)\right]$
$
\begin{aligned}
& \frac{y+2}{3+2}=\frac{x-1}{5-1} \Rightarrow \frac{y+2}{5}=\frac{x-1}{4} \\
& 4 y+8=5 x-5 \\
& 5 x=4 y+13 \Rightarrow x=\frac{4 y+13}{5}
\end{aligned}
$
Since we find point of intersection with $\mathrm{x}$ axis we put $\mathrm{y}=0$.
So $y=0 \Rightarrow x=\frac{13}{5}$.
$\therefore$ The reflection point is $\left(\frac{13}{5}, 0\right)$
Question 16.
A line is drawn perpendicular to $5 x=y+7$. Find the equation of the line if the area of the triangle formed by this line with co-ordinate axes is 10 sq. units.
Solution:
Equation of the given lines $5 x=y+7 \Rightarrow 5 x-y=7$.
So its perpendicular will be of the form $x+5 y=7$
$
\Rightarrow \frac{x}{k}+\frac{5 y}{k}=1(i . e) \frac{x}{k}+\frac{y}{k / 5}=1 \text {. }
$
Now $x$ intercept $=k$ and $y$ intercept $=k / 5$.
Area of the $\Delta=\frac{1}{2}(k)(k / 5)=\frac{k^2}{10}=10$ (given) $\Rightarrow k^2=100$ or $k=10$
So equation of the line is $x+5 y= \pm 10$
Question 17.
Find the image of the point $(-2,3)$ about the line $x+2 y-9=0$.
Solution:
The coordinates of image of the point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ with respect to the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ can be obtained by the line $\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{-2\left(a x_1+b y_1+c\right)}{a^2+b^2}$
Here $\left(x_1, y_1\right)=(-2,3)$ and the given line is $x+2 y-9=0$.
So the image is $\frac{x+2}{1}=\frac{y-3}{2}=\frac{-2[-2+2(3)-9]}{1+4}$
$
\begin{aligned}
& \text { (i.e) } \frac{x+2}{1}=\frac{y-3}{2}=\frac{-2(-2+6-9)}{5} \\
& \Rightarrow \frac{x+2}{1}=\frac{y-3}{2}=\frac{-2(-5)}{5}=2 \\
& \Rightarrow \frac{x+2}{1}=2 \quad \frac{y-3}{2}=2 \\
& \Rightarrow x=2-2=0 \Rightarrow y=4+3=7 \\
&
\end{aligned}
$
So the image is $(0,7)$
Question 18 .
A photocopy store charges Rs. 1.50 per copy for the first 10 copies and Rs. 1.00 per copy after the 10th copy. Let $x$ be the number of copies, and let $y$ be the total cost of photocopying.
(i) Draw graph of the cost as $\mathrm{x}$ goes from 0 to 50 copies.
(ii) Find the cost of making 40 copies
Solution:
(i)
$y=f(x)= \begin{cases}1.5 x & 0<x \leq 10 \\ 15+1(x-10) & \text { if } x>10 \\ (\text { i.e }) x+5 & \end{cases}$
(ii) The cost of making 40 copies is $40+5=$ Rs. 45 .
Question 19.
Find atleast two equations of the straight lines in the family of the lines $y=5 x+b$, for which $b$ and the $x$-coordinate of the point of intersection of the lines with $3 x-4 y=6$ are integers.
Solution:
$
\begin{aligned}
& y=5 x+b \\
& 3 x-4 y=6
\end{aligned}
$
Solving (1) and (2)
Substituting $y$ value from (1) in (2) we get
$
\begin{aligned}
& y=5 x+b \\
& 3 x-4 y=6
\end{aligned}
$
Solving (1) and (2)
Substituting $y$ value from (1) in (2) we get
$
\begin{aligned}
3 x-4(5 x+b) & =6 \\
3 x-20 x-4 b & =6 \\
-17 x & =6+4 b \\
\Rightarrow \quad x & =\frac{6+4 b}{-17}
\end{aligned}
$
So, $y=5\left(\frac{6+4 b}{-17}\right)+b \Rightarrow y=\frac{30+3 b}{-17}$
So, $(x, y)=\left(\frac{6+4 b}{-17}, \frac{30+3 b}{-17}\right)$
Since, $x$ coordinate and 6 are integers $6+46$ must be multiple of 17
$
\text { (i.e) } \pm 17, \pm 34
$
$\therefore$ Equation of lines $y=5 x+b$ will be $y=5 x+7, y=5 x-10$
Question 20.
Find all the equations of the straight lines in the family of the lines $\mathrm{y}=\mathrm{mx}-3$, for which $\mathrm{m}$ and the $\mathrm{x}$ coordinate of the point of intersection of the lines with $x-y=6$ are integers.
Solution:
Equation of the given lines are
$y=\mathrm{mx}-3 \ldots \ldots(1)$
and $x-y=6$
(2)
Solving (1) and (2)
$
x-(m x-3)=6
$
(i.e)
$
x-m x+3=6
$
$
\begin{array}{rlrl}
\Rightarrow & x(1-m) & =6-3=3 \\
& \text { Now (2) } \Rightarrow & =\frac{3}{1-m} \\
(\text { i.e }) & x-y & =6 \\
\Rightarrow & y & =x-6 \\
y & =\frac{3}{1-m}-6=\frac{3-6+6 m}{1-m}=\frac{6 m-3}{1-m} \\
& \therefore(x, y) & =\left(\frac{3}{1-m}, \frac{6 m-3}{1-m}\right)
\end{array}
$
Since $\mathrm{m}$ and $\mathrm{x}$ coordinates are integers
$1-m$ is the divisor of 3 (i.e) $\pm 1, \pm 3$
$
\begin{array}{c|c|c|c}
1-m=+1 & 1-m=-1 & 1-m=+3 & 1-m=-3 \\
\Rightarrow m=0 & \Rightarrow m=2 & \Rightarrow m=-2 & \Rightarrow m=4
\end{array}
$
So equation of lines are $(y=m x-3), y=m x-3$
(i) When $\mathrm{m}=0, \mathrm{y}=-3$
(ii) When $\mathrm{m}=2, \mathrm{y}=2 \mathrm{x}-3$
(iii) When $\mathrm{m}=-2, \mathrm{y}=-2 \mathrm{x}-3$ or $2 \mathrm{x}+\mathrm{y}+3=0$
(iv) When $\mathrm{m}=4, \mathrm{y}=4 \mathrm{x}-3$