Exercise 9.1-Additional Questions - Chapter 9 - Limits and Continuity - 11th Maths Guide Samacheer Kalvi Solutions
Updated On 26-08-2025 By Lithanya
You can Download the Exercise 9.1-Additional Questions - Chapter 9 - Limits and Continuity - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Additional Questions
Question 1.
$
f(x)=\left\{\begin{array}{l}
a+b x, x<1 \\
4, x=1 \\
b-a x, x>1
\end{array} \text { and, if } \lim _{x \rightarrow 1} f(x)=f(1) .\right.
$
What are possible values of $a$ and $b$ ?
Solution:
We have, $\quad \lim _{x \rightarrow 1} f(x)=f(1)$
$
\begin{aligned}
& \Leftrightarrow \quad \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1) \\
& \Leftrightarrow \quad \lim _{x \rightarrow 1^{-}} f(x)=f(1) \text { and, } \lim _{x \rightarrow 1^{+}} f(x)=f(1) \\
& \text { ¿. } \quad \lim _{x \rightarrow 0} f(1-h)=4 \text { and, } \lim _{x \rightarrow 0} f(1+h)=4 \\
& \Leftrightarrow \quad \lim _{x \rightarrow 0}\{a+b(1-h)\}=4 \text { and, } \lim _{x \rightarrow 0}\{b-a(1+h)\}=4 \\
& \Leftrightarrow \quad a+b=4 \text { and, } b-a=4 \\
& a=0, b=4 \\
&
\end{aligned}
$
Question 2.
If $f(x)=\left\{\begin{array}{l}2 x+3, x \leq 0 \\ 3(x+1), x>0\end{array}\right.$. Find $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$.
Solution:
We have,
$
\begin{aligned}
& f(x)= \begin{cases}2 x+3, & x \leq 0 \\
3(x+1) & x \leq 0\end{cases} \\
& \therefore \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(2 x+3)=2 \times 0+3=3 \\
&
\end{aligned}
$
So, $\lim _{x \rightarrow 0} f(x)$ exists and is equal to 3
$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x+3=2 \times 1+3=5 \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 3(x+1)=3(1+1)=6 \\
& \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)
\end{aligned}
$
Hence, $\lim _{x \rightarrow 1} f(x)$ does not exist.
Question 3.
Find $\lim _{x \rightarrow 1} f(x)$, if $f(x)=\left\{\begin{array}{c}x^2-1, x \leq 1 \\ -x^2-1, x>1\end{array}\right.$.
Solution:
We have,
$
\begin{aligned}
& f(x)=\left\{\begin{array}{c}
x^2-1, x \leq 1 \\
-x^2-1, x>1
\end{array}\right. \\
& \therefore \quad \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^2-1=1^2-1=0 \\
& \text { and } \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}-x^2-1=-1-1=-2 \\
& \therefore \quad \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x) \\
&
\end{aligned}
$
Hence, $\lim _{x \rightarrow 1} f(x)$ does not exist.
Question 4.
Evaluate $\lim _{x \rightarrow 0} f(x)$, where $f(x)=\left\{\begin{array}{c}\frac{|x|}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$
Solution:
We have,
$
f(x)=\left\{\begin{array}{c}
\frac{|x|}{x}, x \neq 0 \\
0, x=0
\end{array}\right.
$
$
\begin{array}{ll}
\therefore & \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1 \\
\text { and, } & \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0} \frac{x}{x}=1 \\
\therefore & \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)
\end{array}
$
Hence, $\lim _{x \rightarrow 1} f(x)$ does not exist.
Question 5.
Let $a_1, a_2 \ldots \ldots \ldots \ldots \ldots a_n$ be fixed real numbers such that $f(x)=\left(x-a_1\right),\left(x-a_2\right), \ldots \ldots \ldots\left(x-a_n\right)$ what $\lim _{x \rightarrow a} f(x)$ For $a \neq a_1, a_2, \ldots \ldots \ldots \ldots a_n$ compute $\lim _{x \rightarrow a} f(x)$
Solution:
We have, we have,
$
\begin{aligned}
\therefore \quad \lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow 0} f\left(a_1-h\right)=\lim _{x \rightarrow 0}-h\left(a_1-h-a_2\right)\left(a_1-h-a_3\right) \ldots\left(a_1-h-a_n\right) \\
& =0\left(a_1-a_2\right)\left(a_1-a_3\right) \ldots\left(a_1-a_n\right)=0 \\
\lim _{x \rightarrow a_1^{+}} f(x) & =\lim _{x \rightarrow 0}\left(a_1+h-a_1\right)\left(a_1+h-a_2\right)\left(a_1+h-a_3\right) \ldots\left(a_1+h-a_n\right) \\
& =\lim _{x \rightarrow 0} h\left(a_1+h-a_2\right)\left(a_1+h-a_3\right) \ldots\left(a_1+h-a_n\right) \\
& =0\left(a_1-a_2\right)\left(a_1-a_3\right) \ldots\left(a_1-a_n\right)=0 \\
\therefore \quad \lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a_1^{+}} f(x)=0
\end{aligned}
$
Hence, $\lim _{x \rightarrow a_1} f(x)=0$.
For any $a \neq a_1, a_2, \ldots a_n$.
$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(x-a_1\right)\left(x-a_2\right)\left(x-a_3\right) \ldots\left(x-a_n\right) \\
& =\left(a-a_1\right)\left(a-a_2\right)\left(a-a_3\right) \ldots\left(a-a_n\right)
\end{aligned}
$