Exercise 11.7 - Chapter 11 - Integral Calculus - 11th Maths Guide Samacheer Kalvi Solutions
Updated On 26-08-2025 By Lithanya
You can Download the Exercise 11.7 - Chapter 11 - Integral Calculus - 11th Maths Guide Samacheer Kalvi Solutions with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Ex 11.7
Integrate the following with respect to $\mathrm{x}$
Question 1.
(i) $9 \mathrm{xe}^{3 \mathrm{x}}$
(ii) $x \sin 3 x$
(iii) $25 \mathrm{xe}^{-5 \mathrm{x}}$
(iv) $\mathrm{x} \sec \mathrm{x} \tan \mathrm{x}$
Solution:
(i) $\int 9 x e^{3 x} d x$
$
\begin{aligned}
I & =\int 9 x e^{3 x} d x \\
& =9 \int x e^{3 x} d x
\end{aligned}
$
Applying Bernoulli's formula
$
\begin{aligned}
\int u d v & =u v-u^{\prime} v_1+\ldots \\
I & =9\left[\frac{x e^{3 x}}{3}-(1) \frac{\left(e^{3 x}\right)}{9}\right]
\end{aligned}
$
$
\begin{aligned}
=\frac{9}{3}\left(x e^{3 x}-\frac{e^{3 x}}{3}\right) & =3\left(x e^{3 x}-\frac{e^{3 x}}{3}\right) \\
& =3 x e^{3 x}-e^{3 x}=e^{3 x}(3 x-1)+c
\end{aligned}
$
(ii) $\mathrm{I}=\int x \sin 3 x d x$
Applying Bernoulli's formula
$
\begin{aligned}
\int u d v & =u v-u^{\prime} v_1+\ldots \\
I & =(x)\left(\frac{-\cos 3 x}{3}\right)-(1)\left(\frac{-\sin 3 x}{9}\right)+c \\
& =\frac{-x \cos 3 x}{3}+\frac{\sin 3 x}{9}+c .
\end{aligned}
$
(iii) $\mathrm{I}=\int 25 x e^{-5 x} d x=25 \int x e^{-5 x} d x$
Applying Bernoulli's formula
$
\int u d v=u v-u^{\prime} v_1+\ldots
$
$
\begin{aligned}
\mathrm{I} & =25\left[(x)\left(\frac{e^{-5 x}}{-5}\right)-(1)\left(\frac{e^{-5 x}}{25}\right)\right]+c \\
& =-5 x e^{-5 x}-e^{-5 x}+c \\
& =-e^{-5 x}[5 x+1]+c
\end{aligned}
$
(iv) $\mathrm{I}=\int x \sec x \tan x d x$
Applying Bernoulli's formula
$
\begin{aligned}
\int u d v & =u v-u^{\prime} v_1+\ldots \\
\mathrm{I} & =x \sec x-\log |\sec x+\tan x|+c .
\end{aligned}
$
Question 2.
(i) $\mathrm{x} \log \mathrm{x}$
(ii) $27 \mathrm{x}^2 \mathrm{e}^{3 \mathrm{x}}$
(iii) $x^2 \cos x$
(iv) $x^3 \sin x$
Solution
(iii) $\mathrm{I}=\int 25 x e^{-5 x} d x=25 \int x e^{-5 x} d x$
Applying Bernoulli's formula
$
\int u d v=u v-u^{\prime} v_1+\ldots
$
$
d u=\frac{1}{x} d x \quad \Rightarrow \quad v=\frac{x^2}{2}
$
Applying Integration by parts,
$
\begin{aligned}
\int u d v & =u v-\int v d u \\
& =(\log x)\left(\frac{x^2}{2}\right)-\int\left(\frac{x^2}{2}\right)\left(\frac{1}{x}\right) d x \\
& =\frac{x^2}{2} \log |x|-\frac{x^2}{4}+c
\end{aligned}
$
(ii) I $\mathrm{I}=\int 27 x^2 e^{3 x} d x=27 \int x^2 e^{3 x} d x$
Applying Bernoulli's formula
$
\begin{aligned}
\int u d v & =u v-u^{\prime} v_1+u^{\prime \prime} v_2-\ldots \\
& =27\left[\frac{x^2 e^{3 x}}{3}-\frac{2 x e^{3 x}}{9}+\frac{2 e^{3 x}}{27}\right]+c \\
& =27 e^{3 x}\left[\frac{x^2}{3}-\frac{2 x}{9}+\frac{2}{27}\right]+c \\
& =e^{3 x}\left[9 x^2-6 x+2\right]+c .
\end{aligned}
$
(iii) $\mathrm{I}=\int x^2 \cos x d x$
Applying Bernoulli's formula
$
\begin{aligned}
\int u d v= & u v-u^{\prime} v_1+u^{\prime \prime} v_2-\ldots \\
= & \left(x^2\right)(\sin x)-(2 x)(-\cos x) \\
& +(2)(-\sin x)+c \\
= & x^2 \sin x+2 x \cos x-2 \sin x+c
\end{aligned}
$
(iv) $\mathrm{I}=\int x^3 \sin x d x$
Applying Integration by parts,
$
\begin{aligned}
\int u d v= & u v-u^{\prime} v_1+u^{\prime \prime} v_2-\ldots \\
= & \left(x^3\right)(-\cos x)-\left(3 x^2\right)(-\sin x) \\
& +(6 x)(\cos x)-(6) \sin x+c \\
= & -x^3 \cos x+3 x^2 \sin x \\
& +6 x \cos x-6 \sin x+c
\end{aligned}
$
Question 3.
(i) $\frac{x \sin ^{-1} x}{\sqrt{1-x^2}}$
(ii) $\mathrm{x}^2 \mathrm{e}^{x^2}$
(iii) $\tan ^{-1}\left(\frac{8 x}{1-16 x^2}\right)$
(iv) $\sin ^{-1}\left(\frac{2 x}{1+x^2}\right)$
Solution:
(i) $\mathrm{I}=\int \frac{x \sin ^{-1} x}{\sqrt{1-x^2}} d x$
$
\begin{aligned}
& t=\sin ^{-1} x \\
& \Rightarrow \quad \sin t=x \\
& \frac{d t}{d x}=\frac{1}{\sqrt{1-x^2}} \\
& \sqrt{1-x^2} d t=d x \\
&
\end{aligned}
$
Sub (2) and (3) in (1)
$
\begin{aligned}
& \Rightarrow \int \frac{x t}{\sqrt{1-x^2}} \sqrt{1-x^2} d t \\
&=\int t \sin t d t
\end{aligned}
$
Applying Bernoulli's formula
$
\begin{aligned}
& =(t)(-\cos t)-(1)(-\sin t)+c \\
& =-t \cos t+\sin t+c
\end{aligned}
$
$
\text { since, } \begin{aligned}
\sin t & =\sin \left(\sin ^{-1} x\right)=x \\
\cos t & =\sqrt{1-\sin ^2 t}=\sqrt{1-x^2}
\end{aligned}
$
(ii) $\mathrm{I}=\int x^5 e^{x^2} d x$
D.w.r. to ' $x$ '
$
\begin{aligned}
& \frac{d t}{d x}=2 x \\
& \frac{d t}{2 x}=d x
\end{aligned}
$
Sub (2) and (3) in (1)
$
\begin{aligned}
\Rightarrow \quad \int x^5 e^t \frac{d t}{2 x} & =\frac{1}{2} \int x^4 e^t d t \\
& =\frac{1}{2} \int t^2 e^t d t
\end{aligned}
$
Applying Bernoulli's formula
$
\begin{array}{rc}
& d v=e^t d t \\
u=t^2, & v=e^t \\
u^{\prime}=2 t, & v_1=e^t \\
u^{\prime \prime}=2, & v_2=e^t
\end{array}
$
$
=\frac{1}{2}\left[t^2 e^t-2 t e^t+2 e^t\right]+c
$
$
\begin{aligned}
& =\frac{e^t}{2}\left[t^2-2 t+2\right]+c \\
& =\frac{e^{x^2}}{2}\left[x^4-2 x^2+2\right]+c
\end{aligned}
$
$
\begin{aligned}
& I=\int \tan ^{-1}\left(\frac{8 x}{1-16 x^2}\right) d x \\
& \text { put } 4 x=\tan \theta \\
& 4 d x=\sec ^2 \theta d \theta \\
& I=\int \tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^2 \theta}\right)\left(\frac{\sec ^2 \theta d \theta}{4}\right) \\
& =\frac{1}{4} \int \tan ^{-1}(\tan 2 \theta) \sec ^2 \theta d \theta \\
& =\frac{1}{4} \int 2 \theta \sec ^2 \theta d \theta \\
& =\frac{1}{2} \int \theta \sec ^2 \theta d \theta \\
&
\end{aligned}
$
(iii)
Applying by integration parts
$
\begin{aligned}
& =\frac{1}{2}\left[\theta \tan \theta-\int \tan \theta d \theta\right] \\
& =\frac{1}{2}[\theta \tan \theta-\log |\sec \theta|]+c \\
\int \tan ^{-1}( & \left.\frac{8 x}{1-16 x^2}\right) d x \\
& =\frac{1}{2}\left[4 x \tan ^{-1}(4 x)-\log \left|\sqrt{1+\tan ^2 \theta}\right|\right]+c \\
& =\frac{1}{2}\left[4 x \tan ^{-1}(4 x)-\log \left|\sqrt{1+16 x^2}\right|\right]+c
\end{aligned}
$
(iv) $\mathrm{I}=\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) d x$
$
\text { put } \begin{aligned}
x & =\tan \theta \\
d x & =\sec ^2 \theta d \theta
\end{aligned}
$
$\begin{aligned}
\mathrm{I} & =\int \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^2 \theta}\right) \sec ^2 \theta d \theta \\
& =\int \sin ^{-1}(\sin 2 \theta) \sec ^2 \theta d \theta
\end{aligned}$
$
\begin{aligned}
& =\int 2 \theta \sec ^2 \theta d \theta \\
& =2 \int(\theta)\left(\sec ^2 \theta d \theta\right) \\
& I=2\left[\theta \tan \theta-\int \tan \theta d \theta\right] \\
& =2 \theta \tan \theta-2 \log |\sec \theta|+c \quad\left(\sec \theta=\sqrt{1+\tan ^2 \theta}\right) \\
& \int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) d x=2 x \tan ^{-1} x-2 \log \left|\sqrt{1+x^2}\right|+c \\
& =2\left[x \tan ^{-1} x-\log \left|\sqrt{1+x^2}\right|\right]+c \\
&
\end{aligned}
$