WELCOME TO SaraNextGen.Com

Miscellaneous Exercise (Revised) - Chapter 11 - Three Dimensional Geometry - Ncert Solutions class 12 - Maths

Updated On 26-08-2025 By Lithanya


You can Download the Miscellaneous Exercise (Revised) - Chapter 11 - Three Dimensional Geometry - Ncert Solutions class 12 - Maths with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends

Ncert Solutions Class 12 Maths: Chapter 11 - Three Dimensional Geometry

Miscellaneous Exercise Question 1.

Find the angle between the lines whose direction ratios are $a, b, c$ and $b-c, c-a, a-b$.

Answer.

Direction ratios of one line are $a, b, c$
$\Rightarrow$ A vector along this line is $\overrightarrow{b_1}=a \hat{i}+b \hat{j}+c \hat{k}$
Direction ratios of second line are $b-c, c-a, a-b$
$\Rightarrow$ A vector along second line is $\overrightarrow{b_2}=(b-c) \hat{i}+(c-a) \hat{j}+(a-b) \hat{k}$
Let $\theta$ be the angle between the two lines, then

$\begin{aligned}
& \cos \theta=\frac{\left|\overrightarrow{b_1} \cdot \overrightarrow{b_2}\right|}{\left|\overrightarrow{b_1}\right| \cdot|\cdot| \overrightarrow{b_2} \mid}=\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^2+b^2+c^2} \sqrt{(b-c)^2+(c-a)^2+(a-b)^2}} \\
& =\frac{a b-a c+b c-a b+a c-b c}{\sqrt{a^2+b^2+c^2} \sqrt{(b-c)^2+(c-a)^2+(a-b)^2}}=0=\cos 90^{\circ} \\
& \Rightarrow \theta=90^{\circ}
\end{aligned}$

Miscellaneous Exercise Question 2.

Find the equation of the line parallel to $x$-axis and passing through the origin.

Answer.

We know that a unit vector along $x$ - axis is $\hat{i}=\hat{i}+0 \hat{j}+0 \hat{k}$
$\therefore$ Direction cosines of $x$-axis are coefficients of $\hat{i}, \hat{j}, \hat{k}$ in the unit vector
i.e., $1,0,0=l, m, n$
$\therefore$ Equation of the required line passing through the origin $(0,0,0)$ and parallel to $x-$ axis is $\frac{x-0}{1}=\frac{y-0}{0}=\frac{z-0}{0} \Rightarrow \frac{x}{1}=\frac{y}{0}=\frac{z}{0}$

Vector equation of the required line is $\vec{r}=\vec{a}+\lambda \vec{b}$
$
\begin{aligned}
& \Rightarrow \vec{r}=\overrightarrow{0}+\lambda \hat{i}[\vec{a}=\overrightarrow{0} \text { and } \vec{b}=\hat{i}] \\
& \Rightarrow \vec{r}=\lambda \hat{i} \\
&
\end{aligned}
$

Miscellaneous Exercise Question 3.

If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of $k$.

Answer.

Given: Equation of one line is $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$
Direction ratios of this line are its denominators, i.e., $-3,2 k, 2=a_1, b_1, c_1$
$\therefore$ A vector along this line is $\overrightarrow{b_1}=-3 \hat{i}+2 k \hat{j}+2 \hat{k}$
Again, equation of second line is $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$
Direction ratios of this line are its denominators, i.e., $3 k, 1,-5=a_2, b_2, c_2$

$\therefore$ A vector along this line is $\overrightarrow{b_2}=3 k \hat{i}+\hat{j}-5 \hat{k}$
Since these given lines are perpendicular.
$
\begin{aligned}
& \therefore \overrightarrow{b_1} \cdot \overrightarrow{b_2}=a_1 a_2+b_1 b_2+c_1 c_2=0 \\
& \Rightarrow(-3)(3 k)+(2 k)(1)+2(-5)=0 \Rightarrow-9 k+2 k-10=0 \\
& \Rightarrow-7 k=10 \Rightarrow k=\frac{-10}{7}
\end{aligned}
$

Miscellaneous Exercise Question 4.

Find the shortest distance between lines $\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and
$
\bar{r}=4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})
$

Answer.

Given: Vector equation of one line is $\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$
Comparing with $\vec{r}=\overrightarrow{a_1}+\lambda \overrightarrow{b_1}$, we get
$
\overrightarrow{a_1}=6 \hat{i}+2 \hat{j}+2 \hat{k} \text { and } \overrightarrow{b_1}=\hat{i}-2 \hat{j}+2 \hat{k}
$

Again given: Vector equation of another line is $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$
Comparing with $\vec{r}=\overrightarrow{a_2}+\mu \overrightarrow{b_2}$, we get
$
\overrightarrow{a_2}=-4 \hat{i}-\hat{k} \text { and } \overrightarrow{b_2}=3 \hat{i}-2 \hat{j}-2 \hat{k}
$

We know that length of shortest distance between two (skew) lines is $\frac{\left|\left(\overrightarrow{a_2}-\overrightarrow{a_1}\right) \cdot\left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right)\right|}{\left|\overrightarrow{b_1} \times \overrightarrow{b_2}\right|}$..
(i)
$
\begin{aligned}
& \text { Now } \overrightarrow{a_2}-\overrightarrow{a_1}=-4 \hat{i}-\hat{k}-(6 \hat{i}+2 \hat{j}+2 \hat{k})=-4 \hat{i}-\hat{k}-6 \hat{i}-2 \hat{j}-2 \hat{k}=-10 \hat{i}-2 \hat{j}-3 \hat{k} \\
& \text { Again } \overrightarrow{b_1} \times \overrightarrow{b_2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 2 \\
3 & -2 & -2
\end{array}\right|
\end{aligned}
$

Expanding along first row,
$
\begin{aligned}
& =\hat{i}(4+4)-\hat{j}(-2-6)+\hat{k}(-2+6)=8 \hat{i}+8 \hat{j}+4 \hat{k} \\
& \therefore\left(\overrightarrow{a_2}-\overrightarrow{a_1}\right) \cdot\left(\overrightarrow{b_1} \times \overrightarrow{b_2}\right)=(-10)(8)+(-2)(8)+(-3) 4 \\
& =-80-16-12=-108
\end{aligned}
$

And $\left|\overrightarrow{b_1} \times \overrightarrow{b_2}\right|=\sqrt{(8)^2+(8)^2+(4)^2}=\sqrt{64+64+16}=\sqrt{144}=12$
Putting these values in eq. (i), length of shortest distance $=\frac{|-108|}{12}=\frac{108}{12}=9$

Miscellaneous Exercise Question 5.

Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

Answer.

Given: A point on the required line is $\mathrm{A}(1,2,-4)$
$\therefore$ Position vector of point $\mathrm{A}$ is $\vec{a}=(1,2,-4)=\hat{i}+2 \hat{j}-4 \hat{k}$
Also given equations of two lines
$
\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}
$
$\therefore$ Direction ratios of given two lines are $\overrightarrow{b_1}=3 \hat{i}-16 \hat{j}+7 \hat{k}$ and $\overrightarrow{b_2}=3 \hat{i}+8 \hat{j}-5 \hat{k}$
$
\text { Now } \vec{b}=\overrightarrow{b_1} \times \overrightarrow{b_2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
3 & -16 & 7 \\
3 & 8 & -5
\end{array}\right|
$

Expanding along first row
$
\begin{aligned}
& =\hat{i}(80-56)-\hat{j}(-15-21)+\hat{k}(24+48)=24 \hat{i}+36 \hat{j}+72 \hat{k} \\
& \Rightarrow \vec{b}=12(2 \hat{i}+3 \hat{j}+6 \hat{k})
\end{aligned}
$
$\therefore$ Equation of the required line is $\vec{r}=\vec{a}+\lambda \vec{b}$

$
\Rightarrow \bar{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(12)(2 \hat{i}+3 \hat{j}+6 \hat{k})
$

Again replacing $12 \lambda$ by $\lambda$,
$
\Rightarrow \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
$