Examples (Revised) - Chapter 11 - Three Dimensional Geometry - Ncert Solutions class 12 - Maths
Updated On 26-08-2025 By Lithanya
You can Download the Examples (Revised) - Chapter 11 - Three Dimensional Geometry - Ncert Solutions class 12 - Maths with expert answers for all chapters. Perfect for Tamil & English Medium students to revise the syllabus and score more marks in board exams. Download and share it with your friends
Share this to Friend on WhatsApp
Ncert Solutions Class 12 Maths: Chapter 11 - Three Dimensional Geometry
Example 1
If a line makes angle $90^{\circ}, 60^{\circ}$ and $30^{\circ}$ with the positive direction of $x, y$ and $z$-axis respectively, find its direction cosines.
Solution
Let the $d . c$.' $s$ of the lines be $l, m, n$. Then $l=\cos 90^{\circ}=0, m=\cos 60^{\circ}=\frac{1}{2}$,
$
n=\cos 30^{\circ}=\frac{\sqrt{3}}{2} \text {. }
$
Example 2
If a line has direction ratios $2,-1,-2$, determine its direction cosines.
Solution
Direction cosines are
$
\frac{2}{\sqrt{2^2+(-1)^2+(-2)^2}}, \frac{-1}{\sqrt{2^2+(-1)^2+(-2)^2}}, \frac{-2}{\sqrt{2^2+(-1)^2+(-2)^2}}
$
or $\quad \frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$
Example 3
Find the direction cosines of the line passing through the two points $(-2,4,-5)$ and $(1,2,3)$.
Solution
We know the direction cosines of the line passing through two points $\mathrm{P}\left(x_1, y_1, z_1\right)$ and $\mathrm{Q}\left(x_2, y_2, z_2\right)$ are given by
$
\begin{aligned}
& \frac{x_2-x_1}{\mathrm{PQ}}, \frac{y_2-y_1}{\mathrm{PQ}}, \frac{z_2-z_1}{\mathrm{PQ}} \\
& \mathrm{PQ}=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2+\left(z_2-z_1\right)^2}
\end{aligned}
$
where
$
\mathrm{PQ}=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2+\left(z_2-z_1\right)^2}
$
Here $\mathrm{P}$ is $(-2,4,-5)$ and $\mathrm{Q}$ is $(1,2,3)$.
So
$
\mathrm{PQ}=\sqrt{(1-(-2))^2+(2-4)^2+(3-(-5))^2}=\sqrt{77}
$
Thus, the direction cosines of the line joining two points is
$
\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}
$
Example 4
Find the direction cosines of $x, y$ and $z$-axis.
Solution
The $x$-axis makes angles $0^{\circ}, 90^{\circ}$ and $90^{\circ}$ respectively with $x, y$ and $z$-axis. Therefore, the direction cosines of $x$-axis are $\cos 0^{\circ}, \cos 90^{\circ}, \cos 90^{\circ}$ i.e., $1,0,0$. Similarly, direction cosines of $y$-axis and $z$-axis are $0,1,0$ and $0,0,1$ respectively.
Example 5
Show that the points A $(2,3,-4)$, B $(1,-2,3)$ and C $(3,8,-11)$ are collinear.
Solution
Direction ratios of line joining $A$ and $B$ are
$
1-2,-2-3,3+4 \text { i.e., }-1,-5,7 \text {. }
$
The direction ratios of line joining $B$ and $C$ are
$
3-1,8+2,-11-3 \text {, i.e., } 2,10,-14 \text {. }
$
It is clear that direction ratios of $\mathrm{AB}$ and $\mathrm{BC}$ are proportional, hence, $\mathrm{AB}$ is parallel to $B C$. But point $B$ is common to both $A B$ and $B C$. Therefore, $A, B, C$ are collinear points.
Example 6
Find the vector and the Cartesian equations of the line through the point $(5,2,-4)$ and which is parallel to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$.
Solution
We have
$
\vec{a}=5 \hat{i}+2 \hat{j}-4 \hat{k} \text { and } \vec{b}=3 \hat{i}+2 \hat{j}-8 \hat{k}
$
Therefore, the vector equation of the line is
$
\vec{r}=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k})
$
Now, $\vec{r}$ is the position vector of any point $\mathrm{P}(x, y, z)$ on the line.
Therefore,
$
\begin{aligned}
x \hat{i}+y \hat{j}+z \hat{k} & =5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k}) \\
& =(5+3 \lambda) \hat{i}+(2+2 \lambda) \hat{j}+(-4-8 \lambda) \hat{k}
\end{aligned}
$
Eliminating $\lambda$, we get
$
\frac{x-5}{3}=\frac{y-2}{2}=\frac{z+4}{-8}
$
which is the equation of the line in Cartesian form.
Example 7
Find the angle between the pair of lines given by
$
\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})
$
and
$
\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})
$
Solution
Here $\vec{b}_1=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}_2=3 \hat{i}+2 \hat{j}+6 \hat{k}$
The angle $\theta$ between the two lines is given by
$
\begin{aligned}
\cos \theta & =\left|\frac{\vec{b}_1 \cdot \vec{b}_2}{\left|\vec{b}_1\right|\left|\vec{b}_2\right|}\right|=\left|\frac{(\hat{i}+2 \hat{j}+2 \hat{k}) \cdot(3 \hat{i}+2 \hat{j}+6 \hat{k})}{\sqrt{1+4+4} \sqrt{9+4+36}}\right| \\
& =\left|\frac{3+4+12}{3 \times 7}\right|=\frac{19}{21} \\
\text { Hence } \quad \theta & =\cos ^{-1}\left(\frac{19}{21}\right)
\end{aligned}
$
Example 8
Find the angle between the pair of lines
$
\begin{aligned}
& \frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4} \\
& \frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}
\end{aligned}
$
Solution
The direction ratios of the first line are 3, 5, 4 and the direction ratios of the second line are $1,1,2$. If $\theta$ is the angle between them, then
$
\cos \theta=\left|\frac{3.1+5.1+4.2}{\sqrt{3^2+5^2+4^2} \sqrt{1^2+1^2+2^2}}\right|=\frac{16}{\sqrt{50} \sqrt{6}}=\frac{16}{5 \sqrt{2} \sqrt{6}}=\frac{8 \sqrt{3}}{15}
$
Hence, the required angle is $\cos ^{-1}\left(\frac{8 \sqrt{3}}{15}\right)$.
Example 9
Find the shortest distance between the lines $l_1$ and $l_2$ whose vector equations are
and
$
\begin{aligned}
\vec{r} & =\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \\
\vec{r} & =2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})
\end{aligned}
$
Solution
Comparing (1) and (2) with $\vec{r}=\vec{a}_1+\lambda \vec{b}_1$ and $\overrightarrow{\mathrm{r}}=\vec{a}_2+\mu \overrightarrow{\mathrm{b}}_2$ respectively, we get
$
\begin{aligned}
& \overrightarrow{\mathrm{a}}_1=\hat{i}+\hat{j}, \vec{b}_1=2 \hat{i}-\hat{j}+\hat{k} \\
& \overrightarrow{\mathrm{a}}_2=2 \hat{i}+\hat{j}-\hat{k} \text { and } \vec{b}_2=3 \hat{i}-5 \hat{j}+2 \hat{k}
\end{aligned}
$
Therefore
$
\vec{a}_2-\vec{a}_1=\hat{i}-\hat{k}
$
and
$
\begin{aligned}
\vec{b}_1 \times \vec{b}_2 & =(2 \hat{i}-\hat{j}+\hat{k}) \times(3 \hat{i}-5 \hat{j}+2 \hat{k}) \\
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 1 \\
3 & -5 & 2
\end{array}\right|=3 \hat{i}-\hat{j}-7 \hat{k}
\end{aligned}
$
So
$
\left|\vec{b}_1 \times \vec{b}_2\right|=\sqrt{9+1+49}=\sqrt{59}
$
Hence, the shortest distance between the given lines is given by
$
d=\left|\frac{\left(\overrightarrow{\mathrm{b}}_1 \times \overrightarrow{\mathrm{b}}_2\right) \cdot\left(\overrightarrow{\mathrm{a}}_2-\overrightarrow{\mathrm{a}}_1\right)}{\left|\overrightarrow{\mathrm{b}}_1 \times \overrightarrow{\mathrm{b}}_2\right|}\right|=\frac{|3-0+7|}{\sqrt{59}}=\frac{10}{\sqrt{59}}
$
Example 10
Find the distance between the lines $l_1$ and $l_2$ given by
$
\text { and } \quad \begin{aligned}
\vec{r} & =\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
\quad \vec{r} & =3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})
\end{aligned}
$
Solution
The two lines are parallel (Why? ) We have
$
\overrightarrow{\mathrm{a}}_1=\hat{i}+2 \hat{j}-4 \hat{k}, \overrightarrow{\mathrm{a}}_2=3 \hat{i}+3 \hat{j}-5 \hat{k} \text { and } \vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}
$
Therefore, the distance between the lines is given by
$
\begin{aligned}
& \left.d=\left|\frac{\vec{b} \times\left(\vec{a}_2-\vec{a}_1\right)}{|\vec{b}|}\right|=\left|\frac{\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 6 \\
2 & 1 & -1
\end{array}\right|}{\sqrt{4+9+36}}\right| \right\rvert\, \\
& =\frac{|-9 \hat{i}+14 \hat{j}-4 \hat{k}|}{\sqrt{49}}=\frac{\sqrt{293}}{\sqrt{49}}=\frac{\sqrt{293}}{7} \\
&
\end{aligned}
$
