INTRODUCTION - Chapter 2 - Solutions - Exercise Solutions - Ncert Solutions class 12 - Chemistry
Share this to Friend on WhatsApp
Question 2.1:
Calculate the mass percentage of benzene (C6H6) and carbon tetrachloride (CCl4) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.
Answer:
Mass percentage of C6H6
Mass percentage of CCl4
Alternatively,
Mass percentage of CCl4 = (100 − 15.28)%
= 84.72%
Question 2.2:
Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.
Answer:
Let the total mass of the solution be 100 g and the mass of benzene be 30 g.
∴Mass of carbon tetrachloride = (100 − 30)g
= 70 g
Molar mass of benzene (C6H6) = (6 × 12 + 6 × 1) g mol−1
= 78 g mol−1
∴Number of moles of
= 0.3846 mol
Molar mass of carbon tetrachloride (CCl4) = 1 × 12 + 4 × 355
= 154 g mol−1
∴Number of moles of CCl4
= 0.4545 mol
Thus, the mole fraction of C6H6 is given as:
= 0.458
Question 2.3:
Calculate the molarity of each of the following solutions: (a) 30 g of Co(NO3)2. 6H2O in 4.3 L of solution (b) 30 mL of 0.5 M H2SO4 diluted to 500 mL.
Answer:
Molarity is given by:
(a) Molar mass of Co (NO3)2.6H2O = 59 + 2 (14 + 3 × 16) + 6 × 18
= 291 g mol−1
∴Moles of Co (NO3)2.6H2O
= 0.103 mol
Therefore, molarity
= 0.023 M
(b) Number of moles present in 1000 mL of 0.5 M H2SO4 = 0.5 mol
∴Number of moles present in 30 mL of 0.5 M H2SO4
= 0.015 mol
Therefore, molarity
= 0.03 M
Question 2.4:
Calculate the mass of urea (NH2CONH2) required in making 2.5 kg of 0.25 molal aqueous solution.
Answer:
Molar mass of urea (NH2CONH2) = 2(1 × 14 + 2 × 1) + 1 × 12 + 1 × 16
= 60 g mol−1
0.25 molar aqueous solution of urea means:
1000 g of water contains 0.25 mol = (0.25 × 60)g of urea
= 15 g of urea
That is,
(1000 + 15) g of solution contains 15 g of urea
Therefore, 2.5 kg (2500 g) of solution contains
= 36.95 g
= 37 g of urea (approximately)
Hence, mass of urea required = 37 g
Note: There is a slight variation in this Answer and the one given in the NCERT textbook.
Question 2.5:
Calculate (a) molality (b) molarity and (c) mole fraction of KI if the density of 20% (mass/mass) aqueous KI is 1.202 g mL-1.
Answer:
(a) Molar mass of KI = 39 + 127 = 166 g mol−1
20% (mass/mass) aqueous solution of KI means 20 g of KI is present in 100 g of solution.
That is,
20 g of KI is present in (100 − 20) g of water = 80 g of water
Therefore, molality of the solution
= 1.506 m
= 1.51 m (approximately)
(b) It is given that the density of the solution = 1.202 g mL−1
∴Volume of 100 g solution
= 83.19 mL
= 83.19 × 10−3 L
Therefore, molarity of the solution
= 1.45 M
(c) Moles of KI
Moles of water
Therefore, mole fraction of KI
= 0.0263