WELCOME TO SaraNextGen.Com

INTRODUCTION - Chapter 2 - Solutions - Exercise Solutions - Ncert Solutions class 12 - Chemistry


Question 2.1:

Calculate the mass percentage of benzene (C6H6) and carbon tetrachloride (CCl4) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

Answer:

Mass percentage of C6Hhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6086/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m43dc2bed.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6086/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m518c6172.gif

Mass percentage of CCl4https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6086/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m2ac177f7.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6086/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m38c249ad.gif

Alternatively,

Mass percentage of CCl4 = (100 − 15.28)%

= 84.72%

Question 2.2:

Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.

Answer:

Let the total mass of the solution be 100 g and the mass of benzene be 30 g.

∴Mass of carbon tetrachloride = (100 − 30)g

= 70 g

Molar mass of benzene (C6H6) = (6 × 12 + 6 × 1) g mol−1

= 78 g mol−1

∴Number of moles of https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6088/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_1663b153.gif

= 0.3846 mol

Molar mass of carbon tetrachloride (CCl4) = 1 × 12 + 4 × 355

= 154 g mol−1

∴Number of moles of CCl4 https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6088/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_7ec24262.gif

= 0.4545 mol

Thus, the mole fraction of C6H6 is given as:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6088/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m7ccb5132.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6088/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_7337be80.gif

= 0.458

Question 2.3:

Calculate the molarity of each of the following solutions: (a) 30 g of Co(NO3)2. 6H2O in 4.3 L of solution (b) 30 mL of 0.5 M H2SO4 diluted to 500 mL.

Answer:

Molarity is given by:

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6090/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_5ad98e54.gif

(a) Molar mass of Co (NO3)2.6H2O = 59 + 2 (14 + 3 × 16) + 6 × 18

= 291 g mol−1

∴Moles of Co (NO3)2.6H2Ohttps://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6090/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m27307348.gif

= 0.103 mol

Therefore, molarity https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6090/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_19b1b7e5.gif

= 0.023 M

(b) Number of moles present in 1000 mL of 0.5 M H2SO4 = 0.5 mol

∴Number of moles present in 30 mL of 0.5 M H2SO4 https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6090/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m17f204c0.gif

= 0.015 mol

Therefore, molarityhttps://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6090/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m4ddc081.gif

= 0.03 M

Question 2.4:

Calculate the mass of urea (NH2CONH2) required in making 2.5 kg of 0.25 molal aqueous solution.

Answer:

Molar mass of urea (NH2CONH2) = 2(1 × 14 + 2 × 1) + 1 × 12 + 1 × 16

= 60 g mol−1

0.25 molar aqueous solution of urea means:

1000 g of water contains 0.25 mol = (0.25 × 60)g of urea

= 15 g of urea

That is,

(1000 + 15) g of solution contains 15 g of urea

Therefore, 2.5 kg (2500 g) of solution contains https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6097/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m1ed2467f.gif

= 36.95 g

= 37 g of urea (approximately)

Hence, mass of urea required = 37 g

Note: There is a slight variation in this Answer and the one given in the NCERT textbook.

Question 2.5:

Calculate (a) molality (b) molarity and (c) mole fraction of KI if the density of 20% (mass/mass) aqueous KI is 1.202 g mL-1.

Answer:

(a) Molar mass of KI = 39 + 127 = 166 g mol−1

20% (mass/mass) aqueous solution of KI means 20 g of KI is present in 100 g of solution.

That is,

20 g of KI is present in (100 − 20) g of water = 80 g of water

Therefore, molality of the solution https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_411311b1.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_6bdc83c7.gif

= 1.506 m

= 1.51 m (approximately)

(b) It is given that the density of the solution = 1.202 g mL−1

∴Volume of 100 g solution https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m7b00e53b.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m276acfcd.gif

= 83.19 mL

= 83.19 × 10−3 L

Therefore, molarity of the solution https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m25207b0b.gif

= 1.45 M

(c) Moles of KI https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m5822b56d.gif

Moles of water https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m96c9f27.gif

Therefore, mole fraction of KI https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m14214134.gif

https://img-nm.mnimgs.com/img/study_content/curr/1/12/17/261/6102/NCERT(INTEXT)_18-11-08)_Utpal_12_Chemistry_2_12_html_m570facca.gif

= 0.0263