WELCOME TO SaraNextGen.Com

Page No 94: - Chapter 5 - Principle Of Inheritance & Variation - Ncert Solutions class 12 - Biology


Question 8:

Two heterozygous parents are crossed. If the two loci are linked what would be the distribution of phenotypic features in F1 generation for a dihybrid cross?

Answer:

Linkage is defined as the coexistence of two or more genes in the same chromosome. If the genes are situated on the same chromosome and lie close to each other, then they are inherited together and are said to be linked genes.

For example, a cross between yellow body and white eyes and wild type parent in a Drosophila will produce wild type and yellow white progenies. It is because yellow bodied and white eyed genes are linked. Therefore, they are inherited together in progenies.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/18/280/6019/NS_7-11-08_Reena_12_Bio_5_16_BHU_SS_html_2546152.jpg

Question 9:

Briefly mention the contribution of T.H. Morgan in genetics.

Answer:

Morgan’s work is based on fruit flies (Drosophila melanogaster). He formulated the chromosomal theory of linkage. He defined linkage as the co-existence of two or more genes in the same chromosome and performed dihybrid crosses in Drosophila to show that linked genes are inherited together and are located on X-chromosome. His experiments have also proved that tightly linked genes show very low recombination while loosely linked genes show higher recombination.

Question 10:

What is pedigree analysis? Suggest how such an analysis, can be useful.

Answer:

Pedigree analysis is a record of occurrence of a trait in several generations of a family. It is based on the fact that certain characteristic features are heritable in a family, for example, eye colour, skin colour, hair form and colour, and other facial characteristics. Along with these features, there are other genetic disorders such as Mendelian disorders that are inherited in a family, generation after generation. Hence, by using pedigree analysis for the study of specific traits or disorders, generation after generation, it is possible to trace the pattern of inheritance. In this analysis, the inheritance of a trait is represented as a tree, called family tree. Genetic counselors use pedigree chart for analysis of various traits and diseases in a family and predict their inheritance patterns. It is useful in preventing hemophilia, sickle cell anemia, and other genetic disorders in the future generations.

Question 11:

How is sex determined in human beings?

Answer:

Human beings exhibit male heterogamy. In humans, males (XY) produce two different types of gametes, X and Y. The human female (XX) produces only one type of gametes containing X chromosomes. The sex of the baby is determined by the type of male gamete that fuses with the female gamete. If the fertilizing sperm contains X chromosome, then the baby produced will be a girl and if the fertilizing sperm contains Y chromosome, then the baby produced will be a boy. Hence, it is a matter of chance that determines the sex of a baby. There is an equal probability of the fertilizing sperm being an X or Y chromosome. Thus, it is the genetic make up of the sperm that determines the sex of the baby.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/18/280/6023/NS_7-11-08_Reena_12_Bio_5_16_BHU_SS_html_m7fce43a9.jpg

Question 12:

A child has blood group O. If the father has blood group A and mother

blood group B, work out the genotypes of the parents and the possible

genotypes of the other offsprings.

Answer:

The blood group characteristic in humans is controlled by three set of alleles, namely, IA, IB, and i. The alleles, IA and IB, are equally dominant whereas allele, i, is recessive to the other alleles. The individuals with genotype, IA IA and IA i, have blood group A whereas the individuals with genotype, IB IB and IB i, have blood group B. The persons with genotype IA Ihave blood group AB while those with blood group O have genotype ii.

Hence, if the father has blood group A and mother has blood group B, then the possible genotype of the parents will be

Father Mother

IA IA or IA i IB IB or IB i

A cross between homozygous parents will produce progeny with AB blood group.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/18/280/6024/NS_7-11-08_Reena_12_Bio_5_16_BHU_SS_html_m1b2a0578.jpg

A cross between heterozygous parents will produce progenies with AB blood group (IAIB) and O blood group (ii).

https://img-nm.mnimgs.com/img/study_content/curr/1/12/18/280/6024/NS_7-11-08_Reena_12_Bio_5_16_BHU_SS_html_46a8b9cd.jpg

Question 13:

Explain the following terms with example

(a) Co-dominance

(b) Incomplete dominance

Answer:

(a) Co-dominance

Co-dominance is the phenomenon in which both the alleles of a contrasting character are expressed in heterozygous condition. Both the alleles of a gene are equally dominant. ABO blood group in human beings is an example of co-dominance. The blood group character is controlled by three sets of alleles, namely, IA, IB, and i. The alleles, IA and IB, are equally dominant and are said to be co­­-dominant as they are expressed in AB blood group. Both these alleles do not interfere with the expression of each other and produce their respective antigens. Hence, AB blood group is an example of co-dominance.

2. Incomplete dominance

Incomplete dominance is a phenomenon in which one allele shows incomplete dominance over the other member of the allelic pair for a character. For example, a monohybrid cross between the plants having red flowers and white flowers in Antirrhinum species will result in all pink flower plants in F1 generation. The progeny obtained in F1 generation does not resemble either of the parents and exhibits intermediate characteristics. This is because the dominant allele, R, is partially dominant over the other allele, r. Therefore, the recessive allele, r, also gets expressed in the F1 generation resulting in the production of intermediate pink flowering progenies with Rr genotype.

https://img-nm.mnimgs.com/img/study_content/curr/1/12/18/280/6026/NS_7-11-08_Reena_12_Bio_5_16_BHU_SS_html_m20c702f3.jpg

Question 14:

What is point mutation? Give one example.

Answer:

Point mutation is a change in a single base pair of DNA by substitution, deletion, or insertion of a single nitrogenous base. An example of point mutation is sickle cell anaemia. It involves mutation in a single base pair in the beta-globin chain of haemoglobin pigment of the blood. Glutamic acid in short arm of chromosome II gets replaced with valine at the sixth position.

Question 15:

Who had proposed the chromosomal theory of inheritance?

Answer:

Sutton and Boveri proposed the chromosomal theory of inheritance in 1902. They linked the inheritance of traits to the chromosomes.

Question 16:

Mention any two autosomal genetic disorders with their symptoms.

Answer:

Two autosomal genetic disorders are as follows.

1. Sickle cell Anaemia

It is an autosomal linked recessive disorder, which is caused by point mutation in the beta-globin chain of haemoglobin pigment of the blood. The disease is characterized by sickle shaped red blood cells, which are formed due to the mutant haemoglobin molecule. The disease is controlled by HbA and HbS allele. The homozygous individuals with genotype, HbS HbS, show the symptoms of this disease while the heterozygous individuals with genotype, HbA HbS, are not affected. However, they act as carriers of the disease.

Symptoms

Rapid heart rate, breathlessness, delayed growth and puberty, jaundice, weakness, fever, excessive thirst, chest pain, and decreased fertility are the major symptoms of sickle cell anaemia disease.

(b) Down’s syndrome

It is an autosomal disorder that is caused by the trisomy of chromosome 21.

Symptoms

The individual is short statured with round head, open mouth, protruding tongue, short neck, slanting eyes, and broad short hands. The individual also shows retarded mental and physical growth.